Synthesized Signal Generators

6070A & 6071A

GPIB
IEEE-488

6070A & 6071A, to 520 MHz or 1040 MHz

Non-harmonic spurious outputs: -90 dBc to -100 dBc to 520 MHz
Precision digital sweep
Front panel memory
AM, FM, qM modulation
Responsive spin knob tuning
Low output VSWR and optional reverse-power protection
Relative amplitude and frequency mode

Design innovations in the 6070A and 6071A combine the precision resolution and settability of a synthesizer with the low-noise performance of the best open-loop signal generators on the market. And these two state-of-the-art instruments were developed to be competitively priced as well as cost effective in other ways.

The 6070A and 6071A are programmable and directly compatible with IEEE Std 488-1978. With them, you may make sophisticated tests and measurements rapidly and with great precision. On VHF and UHF receivers you can measure selectivity, sensitivity, intermodulation distortion, AM rejection, AGC response, audio hum, noise and distortion, and SINAD ratio. Or you can align a discriminator or check IF response using the digital sweep feature.

Spectral purity is excellent. Spurious outputs, those not related harmonically to either the carrier frequency or the power line frequency, are on the order of -90 dBc to -100 dBc to 520 MHz and -84 dBc above 520 MHz. The typical broadband noise floor is a comfortable -150 dBc per Hz, and the single sideband phase-noise is typically -138 dBc per Hz at 20 kHz offset from a 500 MHz carrier. These specifications, by any standard, reflect a truly excellent level of spectral purity.

AM, FM, qM Modulation

Amplitude modulation depth can be set from 0% to 99.9% in 0.1% steps. External dc coupling is provided for leveling, extending bandwidths down to dc, or providing analog control of output amplitude.

Frequency or phase modulation can be set with deviations up to 1 MHz or 100 Hz respectively, depending on the rf frequency. Exceptionally wide deviation is made possible by a high deviation mode that is automatically activated when required. External, dc-coupled FM is available for phase locking the instrument to another source. That extends the maximum deviation at low rates, and provides for analog sweeping with an external signal.

Simultaneous AM+FM or AM+qM is available internally or from internal-external combinations. The internal modulation oscillator covers a wide range of frequencies. It can be continually varied from 20 Hz to 200 kHz, with an over-range capability extending it from 1 Hz to 255 kHz in steps of approximately 0.1%.

The modulation oscillator output is available at a front panel connector. This provides you with an audio source separate from the rf output. Typical total harmonic distortion is 0.05%.

IEEE-488 Interface

No option is required to make the 6070A or 6071A compatible with IEEE Std 488-1978; the capability is built in. And all of the functions that may be controlled from the front panel are also controllable remotely in an IEEE-488 system, except for turning power on and off and controlling the modulation signal output level. Status indicators are: Remote, Addressed, and SRQ. Interface functions are: SH1, AH1, T6, L3, SL1, RL1, DC1, DT1, C0, E2.

Precision Digital Sweep

Versatile sweep modes let you characterize devices such as wideband amplifiers, narrowband crystal filters, and other rf components. Repetitive, single, or manual modes are available with either symmetrical or asymmetrical sweeps. Five sweep step intervals between 20 ms and 500 ms may be selected. A coincidental 0 to 10V staircase sweep signal is available at an output connector to drive X-Y recorders or oscilloscopes. Another rear-panel output signal provides 2-axis blanking for oscilloscopes or a pen-lift signal for X-Y recorders.

Front Panel Program Memory

Up to nine different combinations of front-panel control settings may be stored and later recalled. Up to 50 combinations may be stored in a non-volatile memory using Option -570. This feature reduces errors and saves time in making common measurements.

Responsive Spin-Knob Tuning

In addition to the simple keystroke operation and layout of the front-panel controls, a high-inertia, magnetically detented, optically coupled knob provides analog convenience when continuous adjustments are required. It may be used to select frequency, amplitude, or modulation. Each complete turn gives you 25 increments or decrements, depending on direction of rotation.

Low Output VSWR & Optional Reverse-Power Protection

The rf output impedance of the 6070A and 6071A is 50 ohms with a low source VSWR to minimize the effects of signals reflected from loads having a high VSWR. Option -870 protects the output circuits from being damaged when connected to a transceiver that accidentally transmits power.

Relative Units

A relative-amplitude mode makes it easy to compensate for cable loss, attenuation in the rf output, make linearity tests on detectors and amplifiers, and measure AGC characteristics. Output levels are selectable in 0.1 dB steps, all
the way from -140 dBm to +19 dBm for frequencies up to 520 MHz (+13 dBm above 520 MHz). Flatness is typically ±0.2 dB from 200 kHz to 520 MHz, ±0.3 dB at 1040 MHz.

Besides offering 1 Hz resolution up to 520 MHz (2 Hz above 520 MHz), a relative-frequency mode allows you to display specific frequencies above and below a selected center frequency. It makes testing the frequency response of filters and IF strips easy.

Specifications

Technical Specifications

Specifications for frequencies above 520 MHz apply to 6071A only.

Frequency

6070A Ranges: 0.2 to 519.999 999 MHz
6071A Ranges: 0.2 to 1039.999 998 MHz
6070A Resolution: 1 Hz
6071A Resolution: 1 Hz (<520 MHz), 2 Hz (>520 MHz)

Accuracy & Stability: Same as Reference Oscillator

Reference Oscillator

Internal Standard: 10 MHz quartz oscillator. Aging rate <±0.5 ppm/month. Temperature effects: <±5 ppm 0 to 50°C instrument ambient (relative to 25°C)

Option -130: 10 MHz ovenized oscillator. (See options)

External: 1, 2, 2.5, 5, 10 MHz input. Level required is 0.3 to 4.0V pp sinewave or squarewave. Input impedance is 50 ohms. External reference is automatically switched in when connected

Reference Output: 10 MHz TTL level

Spectral Purity

All specifications are with High Deviation mode off

SSB Phase Noise

<table>
<thead>
<tr>
<th>Carrier Frequency, from Carrier</th>
<th>100 kHz</th>
<th>1 kHz</th>
<th>5 kHz</th>
<th>20 kHz</th>
<th>>3 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 62.5 MHz</td>
<td>-75</td>
<td>-85</td>
<td>-106</td>
<td>-123</td>
<td>-129</td>
</tr>
<tr>
<td>62.5 to 125 MHz</td>
<td>-94</td>
<td>-100</td>
<td>-125</td>
<td>-140</td>
<td>-144</td>
</tr>
<tr>
<td>125 to 250 MHz</td>
<td>-88</td>
<td>-94</td>
<td>-121</td>
<td>-138</td>
<td>-144</td>
</tr>
<tr>
<td>250 to 520 MHz</td>
<td>-82</td>
<td>-88</td>
<td>-115</td>
<td>-132</td>
<td>-144</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td>-76</td>
<td>-82</td>
<td>-109</td>
<td>-126</td>
<td>-138</td>
</tr>
</tbody>
</table>

Accuracy (dB)

<table>
<thead>
<tr>
<th>Output</th>
<th>0.2 to 520 MHz</th>
<th>520 to 1040 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>+19 dBm</td>
<td>±1.0</td>
<td>N/A</td>
</tr>
<tr>
<td>+13 dBm</td>
<td>±1.5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

20°C ±5°C

Residual FM for CW and FM Modes (Hz rms)

<table>
<thead>
<tr>
<th>Carrier Range</th>
<th>0.3 to 3 kHz bw</th>
<th>0.05 to 15 kHz bw</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 62.5 MHz</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>62.5 to 125 MHz</td>
<td>0.3</td>
<td>0.75</td>
</tr>
<tr>
<td>125 to 250 MHz</td>
<td>0.85</td>
<td>1.3</td>
</tr>
<tr>
<td>250 to 520 MHz</td>
<td>1.7</td>
<td>2.5</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td>3.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

*Typically the same for 0.02 to 15 kHz bandwidth.

Residual AM: <0.02% rms (-74 dBc) in a 0.02 to 15 kHz post-detection bandwidth, referred to 100% sinewave modulation. Typically the same in a 0.02 to 15 kHz post-detection bandwidth

Spurious Signals (dBc)

<table>
<thead>
<tr>
<th>Carrier Frequency Range</th>
<th>200 kHz</th>
<th>62.5 kHz</th>
<th>125 kHz</th>
<th>250 kHz</th>
<th>520 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Harmonic >10 kHz offset</td>
<td>-90</td>
<td>-100</td>
<td>-96</td>
<td>-90</td>
<td>-84</td>
</tr>
<tr>
<td>550 Hz to 10 kHz offset</td>
<td>-70</td>
<td>-82</td>
<td>-76</td>
<td>-70</td>
<td>-64</td>
</tr>
<tr>
<td>Power Line, Display, Mechanical <550 Hz offset</td>
<td>-56</td>
<td>-68</td>
<td>-62</td>
<td>-56</td>
<td>-50</td>
</tr>
<tr>
<td>Sub-Harmonic 1/2, 3/2 Hz offset</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-35</td>
</tr>
<tr>
<td>Harmonic (6070A) f2, 5f2, 5f2 offset, >13 dBm</td>
<td>-30</td>
<td>-30</td>
<td>-30</td>
<td>-25</td>
<td>N/A</td>
</tr>
<tr>
<td>Harmonic (6071A) f2, 5f2, 5f2 offset, >13 dBm</td>
<td>-35</td>
<td>-35</td>
<td>-35</td>
<td>-35</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Amplitude Modulation

AM Depth: 0 to 99.9% in 0.1% steps

AM Accuracy: (Internal or External)

<table>
<thead>
<tr>
<th>Carrier Range</th>
<th>Modulation Frequency</th>
<th>AM Depth</th>
<th>Depth Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 5 MHz</td>
<td><1 kHz</td>
<td><2%</td>
<td><5%</td>
</tr>
<tr>
<td>5 to 520 MHz</td>
<td>3 kHz</td>
<td><2%</td>
<td><5%</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td><15 kHz</td>
<td><2%</td>
<td><5%</td>
</tr>
</tbody>
</table>

AM Distortion

<table>
<thead>
<tr>
<th>Carrier Range</th>
<th>AM Depth</th>
<th>Depth Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 5 MHz</td>
<td><1 kHz</td>
<td><2%</td>
</tr>
<tr>
<td>5 to 520 MHz</td>
<td>3 kHz</td>
<td><2%</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td>15 kHz</td>
<td><2%</td>
</tr>
</tbody>
</table>

AM Signal Bandwidth (-3 dB)

<table>
<thead>
<tr>
<th>Current Range</th>
<th>AM Depth</th>
<th>Internal DC Coupled</th>
<th>External DC Coupled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 5 MHz</td>
<td><70%</td>
<td>20 kHz</td>
<td>DC-8 kHz</td>
</tr>
<tr>
<td>5 to 520 MHz</td>
<td><90%</td>
<td>20 kHz</td>
<td>DC-50 kHz</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td><70%</td>
<td>20 kHz</td>
<td>DC-50 kHz</td>
</tr>
</tbody>
</table>

Incidental FM (for 30% AM): 0.3 modulation frequency for <520 MHz; 0.6 modulation frequency for >520 MHz

244

1988 Fluke and Philips Catalog
Synthesized Signal Generators

6070A & 6071A

Frequency Modulation

Maximum Peak Frequency Deviation (kHz)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>ACFM (the lesser of)</th>
<th>DCFM (the lesser of)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 62.5 MHz</td>
<td>999 or (f_m \times (520-f_m))</td>
<td>499</td>
</tr>
<tr>
<td>62.5 to 125 MHz</td>
<td>199 or (f_m \times f_m)</td>
<td>(f_m) or 99.9</td>
</tr>
<tr>
<td>125 to 250 MHz</td>
<td>499 or (f_m \times f_m)</td>
<td>(f_m) or 99.9</td>
</tr>
<tr>
<td>250 to 520 MHz</td>
<td>999 or (f_m \times f_m)</td>
<td>(f_m) or 99.9</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td>999 or (f_m \times f_m)</td>
<td>(f_m) or 99.9</td>
</tr>
</tbody>
</table>

\(f_m \) = Output frequency in megahertz

FM Deviation Resolution: 100 Hz for <100 kHz deviation; 1 kHz for \(\geq 100 \) kHz deviation

FM Deviation Accuracy: (internal or external) ±10% at 400 Hz or 1 kHz modulation rate; ±13% at 0.3 to 50 kHz modulation rate (including flatness)

FM Total Harmonic Distortion

<table>
<thead>
<tr>
<th>Output Frequency Range</th>
<th>DCFM Mode Off and High Deviation</th>
<th>DCFM Mode On 0.5% or More</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 62.5 MHz</td>
<td>0.75% per 100 kHz dev</td>
<td>1.2% per 100 kHz dev</td>
</tr>
<tr>
<td>62.5 to 125 MHz</td>
<td>3.0% per 100 kHz dev</td>
<td></td>
</tr>
<tr>
<td>125 to 250 MHz</td>
<td>1.5% per 100 kHz dev</td>
<td>(600 ÷ (f_m))% per 100 kHz dev</td>
</tr>
<tr>
<td>250 to 520 MHz</td>
<td>0.75% per 100 kHz dev</td>
<td></td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td>0.375% per 100 kHz dev</td>
<td></td>
</tr>
</tbody>
</table>

\(f_m \) = Output frequency in megahertz

FM Signal Bandwidth (-3 dB): 20 Hz to 250 kHz internal or ac coupled external, DC to 250 kHz dc coupled external

Center Frequency Accuracy (DCFM Off): Same as reference oscillator

Center Frequency Accuracy (DCFM On)

<table>
<thead>
<tr>
<th>Output Frequency Range</th>
<th>Initial Accuracy</th>
<th>Typical Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 62.5 MHz</td>
<td>±1 kHz</td>
<td>50 Hz/min</td>
</tr>
<tr>
<td>62.5 to 125 MHz</td>
<td>±250 Hz</td>
<td>12.5 Hz/min</td>
</tr>
<tr>
<td>125 to 250 MHz</td>
<td>±500 Hz</td>
<td>25 Hz/min</td>
</tr>
<tr>
<td>250 to 520 MHz</td>
<td>±1 kHz</td>
<td>50 Hz/min</td>
</tr>
<tr>
<td>520 to 1040 MHz</td>
<td>±2 kHz</td>
<td>100 Hz/min</td>
</tr>
</tbody>
</table>

*Auto-CAL upon initialization

Phase Modulation

Deviation and Distortion

<table>
<thead>
<tr>
<th>Output Frequency Range</th>
<th>Max Peak Deviation Radians</th>
<th>Total Harmonic Distortion Per Radiant of Deviation With High Deviation Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2-62.5 MHz</td>
<td>99.9</td>
<td>0.5(0.75x10^-4)f_m%</td>
</tr>
<tr>
<td>62.5-125 MHz</td>
<td>19.9</td>
<td>0.5(0.3x10^-4)f_m%</td>
</tr>
<tr>
<td>125-250 MHz</td>
<td>49.9</td>
<td>0.5(1.6x10^-4)f_m%</td>
</tr>
<tr>
<td>250-520 MHz</td>
<td>99.9</td>
<td>0.5(0.75x10^-4)f_m%</td>
</tr>
<tr>
<td>520-1040 MHz</td>
<td>99.9</td>
<td>0.5(0.375x10^-4)f_m%</td>
</tr>
</tbody>
</table>

\(f_m \) = Modulation frequency in hertz

PM Resolution: 0.01 radian for <10 radians, 0.1 radian for >10 radians

PM Deviation Accuracy: (Internal or external) ±10% at 400 Hz or 1 kHz modulation rate; ±13% at 0.3 to 3 kHz modulation rate (including flatness)

PM Signal Bandwidth (-3 dB): 0.02 to 12 kHz internal or ac coupled external. DC to 12 kHz external dc coupled

Incidental AM: ±0.5% (-52 dBc) for deviations up to 50 kHz at 1 kHz rate (single sideband component referred to sinewave modulation)

Modulation Signal Source

Modes: AM, FM, AM + FM, AM + φM

Range: 0.02 kHz to 200 kHz

Frequency Accuracy: ±3% for +20°C to +30°C ambient temperature range. Add 0.1% per degree C outside that range

Total Harmonic Distortion: <0.15% from 0.2 kHz to 100 kHz; <0.2% below 0.2 kHz and above 100 kHz

Output Level: 0V to 2V peak to peak into 600Ω

Output Impedance: 600Ω, nominal via front panel BNC connector

External Modulation Input

Level: 1V peak for specified AM, FM, or φM accuracy

Impedance: 600Ω, nominal

Coupling: AC or DC

Switching Time

Frequency: ≤85 ms from last controller command (<35 ms for most small changes) until frequency has settled to within 100 Hz of final value. Applies to frequency changes only

Level: ≤50 ms from last controller command. Applies to level changes only

Frequency Sweep

Sweep Modes: Auto, Single, Manual

Sweep Functions: Symmetrical sweep, asymmetrical sweep, sweep speed

Data Entry: Sweep width, sweep increment

Sweep Speed: Approximately 20 ms, 50 ms, 100 ms, 200 ms, 500 ms, per increment

Sweep Output: 0 to +10V, up to 1000-point stepped ramp. Available at front panel BNC connector

Penlift/Z Axis Blanking: TTL output level at rear panel BNC connector. High during sweep trace and when sweep is off

Memory

Memory Functions: Store, recall, insert above, delete, top

Locations: 9 standard, volatile; Option-570 50 non-volatile. Front panel set-ups can be stored in each location and later re-called

Remote Programming

Interface: IEEE-488

Functions Controlled: All front-panel controls except line power switch and modulation output amplitude (MOD OUT)

Status Indicators: Remote, Addressed, SRQ

Interface Functions: SH1, AH1, T6, L3, SR1, RL1, DC1, DT1, C0, E2

Option Specifications

10 MHz Ovenized Oscillator (-130)

Aging rate <±5 x 10^-10/°C per day after a 21-day warmup. Temperature effects: <±2 x 10^-6/°C

Non-Volatile Memory (-570)

50 locations; operational features same as standard features. Data is stored with built-in battery when power is off

Rear RF Output (-830)

**Type N RF output connector available on rear panel

Auxiliary RF Output (-831)

Greater than -18 dBm, available at rear panel BNC. Impedance, 50 ohms

Reverse Power Protection (-870)

Up to 50 watts from a 50 ohm source over 0.2 to 1040 MHz. Will withstand up to 50V dc

Pulse Modulation (-950)

Adds pulse modulation to 6070A only. Fast 25 rise/fall times with on/off ratio of 40 to 60 dB depending on carrier frequency

General Specifications

EMI: Meets MIL-STD 461A RE02 and CE03, and MIL-I-8181D Sections 4.3.1 and 4.3.2 for both narrowband and broadband tests. RF leakage: less than 3 µV is induced into a two-turn, 1 inch diameter loop 1 inch away from any surface and measured into a 500 receiver

Temperature: 0°C to 50°C, operating; -40°C to +75°C, non-operating

Relative Humidity: ≤95% to 25°C, ≤75% to 50°C

Altitude: ≤10,000 feet

1988 Fluke and Philips Catalog
Power: 100, 120, 200, 240V ac ±10% 47 to 63 Hz; 125 watts typical. For 400 Hz operation consult your Fluke representative.

Size: 13.3 cm H x 43.2 cm W x 54.6 cm D from front panel to rear handle (5.25 in H x 17.0 in W x 21.5 in D)

Weight: 27.7 kg (61 lb)

Safety: CSA 556B certified

Included: Operator's manual, service manual, power cord, serialized and dated calibration certificate

Ordering Information

Models

6070A Synthesized Sig Gen

(0.2-520 MHz) $18,900

6071A Synthesized Sig Gen

(0.2-1040 MHz) 19,900

Options (for 6070A & 6071A)

-130 Ovenized Reference Oscillator .. 1200

-570 Non-Volatile Memory .. 550

-830 Rear RF Output .. 125

-831 Auxiliary RF Output .. 175

-870 Reverse Power Protection .. 280

-950 Pulse Modulation (6070A only) .. 4925

Accessories (Also see page 468)

Y6001 Rack Mount Kit

inc 24" slides .. 275

Y9100 Attenuator, 50 Ohm,

6 dB, BNC .. 55

Y9101 Attenuator, 50 Ohm,

14 dB, BNC .. 55

Y9102 Attenuator, 50 Ohm,

20 dB, BNC .. 55

Y9103 50 Ohm Feedthru

Termination, BNC .. 35

Y9111 3 ft (0.91m) 50Ω Cable,

BNC to BNC .. 20

Y9112 6 ft (1.83m) 50Ω Cable,

BNC to BNC .. 20

Y9308 Adapter, N to BNC, 50Ω .. 20

Y9315 Coaxial Cable, N male to N male left .. 65

Y9316 Cap, Non-shorting, BNC .. 10

Y9317 50Ω Termination, N .. 95

Service & Support

Warranty

One-year product warranty. See page 453 for further information on warranty terms and conditions.

Extended Warranty

**SC1-6070A Repair (w/calibration) ** .. 598

**SC1-6070A Repair (cal w/in or out data) ** .. 673

**SC1-6070A Repair (cal w/in and out data) ** .. 748

**SC2-6070A Cal (1 yr recommended) ** .. 546

**SC2-6070A Cal (1 yr w/in or out data) ** .. 621

**SC2-6070A Cal (1 yr w/in and out data) ** .. 696

**SC1-6071A Repair (w/calibration) ** .. 667

**SC1-6071A Repair (cal w/in or out data) ** .. 742

**SC1-6071A Repair (cal w/in and out data) ** .. 817

**SC2-6071A Cal (1 yr recommended) ** .. 446

**SC2-6071A Cal (1 yr w/in or out data) ** .. 621

**SC2-6071A Cal (1 yr w/in and out data) ** .. 696