Agilent E4406A Vector Signal Analyzer
You develop the wireless future...

Fast and accurate measurements

To stay competitive, wireless equipment manufacturers need flexible test equipment capable of testing different formats with little change in set-up. The Agilent E4406A vector signal analyzer (VSA) is the perfect fit, offering the best combination of speed and accuracy for making one-button, standards-based measurements.

2.5G, 3G, and 3.5G formats

For engineers developing next-generation wireless components and systems, the E4406A provides W-CDMA, HSDPA/HSUPA, cdma2000, 1xEV-DV, 1xEV-DO (Rev-0/A), and EDGE/GSM formats. Using one-button measurements, engineers can quickly verify conformance to these new formats. As the standards have evolved, we have continued to enhance existing measurement personalities, and add new ones. The modular architecture of the E4406A makes it simple for you to upgrade and be ready for the latest standards.
...we provide the signal analysis.

An investment for your future

The number of wireless technologies deployed around the world is growing and the demand for any particular format can change quickly. The E4406A offers format and frequency flexibility.

Easy to use

Multi-format

Comprehensive signal analysis

Speeding up production means being ready to manufacture anything and lose no time doing it. The E4406A easily adapts to virtually any popular format:

- W-CDMA
- HSDPA/HSUPA
- cdma2000
- 1xEV-DV
- 1xEV-DO
- cdmaOne
- EDGE
- GSM
- NADC
- PDC
- WiDEN/idEN
- Spectrum
- Waveform
Built for speed...

Today’s E4406A is getting faster than ever. For example, the W-CDMA adjacent channel power ratio (ACPR) measurement is now nearly eight times faster than it used to be. The GSM output radio frequency spectrum (ORFS) is approximately five times faster. The capture length for W-CDMA EVM has increased from 1 to 15 slots, and the 15 slot EVM is 20% faster, as compared to the 1-slot speed when the E4406A was introduced. Other measurements have improved as well.

The E4406A transmitter power calibration uses time record data and built-in algorithms to provide complete transmitter level calibration with incredible speed – with all the accuracy you expect from the affordably-priced E4406A.

In addition to high-speed throughput and accuracy in the manufacturing environment, the E4406A is designed to allow research and development engineers to quickly obtain results with minimal keystrokes.

The E4406A delivers a logical user interface and a wealth of quick “one button” measurements, enabling designers to quickly try multiple tests without getting bogged down in cryptic menus. The E4406A interface provides the edge needed to expediently evaluate new designs and successfully meet the demands of today’s competitive environment.

Fast standards-based measurements

As a wireless system or component manufacturer, you are under pressure to increase throughput while minimizing capital investments. Long test times can severely limit your manufacturing throughput, so we designed the E4406A.

Since its introduction, progressive enhancements to the E4406A ensure its performance keeps pace with the ever-increasing need for speed.
...without giving up accuracy.

Fast spectrum measurements

The E4406A features pre-configured, one-button measurements for many cellular standards and can also be used for narrowband spectrum measurements. Manufacturers can expect to make intermodulation distortion and other amplitude measurements up to three times faster using the E4406A.

Accuracy

You don’t need to reduce measurement speed to get accurate results. Superior absolute level accuracy of ±0.6 dB (±0.4 dB typical) provides unmatched performance and minimizes test uncertainty. Combined with a linearity of ±0.25 dB over a 76 dB range, the E4406A is a state-of-the-art measurement tool.
The E4406A VSA...

Focused applications including EDGE, GSM, W-CDMA, HSUPA/HSDPA, cdma2000, 1xEV-DV, 1xEV-DO, cdmaOne, NADC, and PDC, as well as narrow-span spectrum and waveform analysis

Baseband measurements with balanced/unbalanced multiple impedance inputs

Large, high-resolution, color display makes viewing multiple traces easy

Zoom feature allows users to display selected measurement windows

One-button, standards-based measurements

Automatic alignment ensures accurate measurement results

Large display makes viewing multiple traces easy.
...comprehensive signal analysis.

Intuitive key strokes

High-speed 10baseT LAN, parallel, and GPIB ports provide speed and flexibility when communicating with the outside world

Built-in floppy disk drive provides PC compatibility and data archiving
Standards compliance

In manufacturing, you need straightforward pass/fail verification of critical specifications. With built-in test limits you don’t have to keep track of every standard. The E4406A performs tests to the requirements of current industry standards with free, easy-to-install, firmware updates.

Speed and throughput

In the world of high-speed manufacturing every millisecond counts. Identify your throughput restrictions and if measurement speed is creating a bottleneck, consider the significant speed advantage of the E4406A.

Transmitter and receiver testing

In combination with the Agilent E4438C ESG vector signal generator, the E4406A offers base station receiver and transmitter testing for major 2G, 2.5G, 3G, and 3.5G wireless formats. The E4406A combined with an E4438C is a test solution that provides the required flexibility, without compromising accuracy, for maximum throughput in base station production with the ability to migrate to new formats.
Verify next-generation designs

For R&D engineers developing next-generation wireless components and systems, the E4406A is a low-cost tool that quickly verifies conformance. Your investment is secure because the E4406A has a modular architecture – making it easy to upgrade to the latest standards.

Characterize using leading test methods

Digital modulation presents new challenges to amplifier manufacturers. Designers need effective methods to quickly characterize digital signals. The E4406A’s complementary cumulative-distribution function (CCDF) is useful for determining a signal’s power statistics, revealing the power peaks relative to the average power for assessing linearity requirements.

Flexible power measurements

Multicarrier power amplifier (MCPA) designers are faced with new measurement challenges. Designers must characterize intermodulation distortion at many frequency offsets and evaluate the effects of different modulation formats over a wide dynamic range. The E4406A features a fully-configurable ACP measurement that can test up to five frequency offsets and be optimized for dynamic range or speed.
TDMA measurement personalities...

GSM with EDGE (Option 202)

The EDGE measurement personality performs the latest standards-based measurements, for both BTS and MS, including:
- Error vector magnitude (EVM)
- Multi-slot power versus time (PvT)
- Output RF spectrum (ORFS)
- Trigger to TO offset in PFER
- IQ offset
- Channel plans for 400, 800, 900, 1800, 1900 MHz
- GSM measurements from Option BAH

The EVM measurement features a unique algorithm to simultaneously display the EVM numerical results and the EDGE constellation diagram using the industry-specified measurement filter.

GSM (Option BAH)

The GSM measurement personality lets you quickly perform measurements to the latest ETSI standards with:
- Mean transmitter carrier power
- Multi-slot PvT
- ORFS
- Phase and frequency error (PFER)
- IQ offset
- Transmitter band spurious
- Channel plans for 400, 700, 800, 900, 1800, 1900 MHz

The personality features easy channel and timeslot selections, configurable PvT masks, and a typical ORFS dynamic range of 90 dB.

NADC and PDC (Option BAE)

Both the North American Digital Cellular (NADC) and Personal Digital Cellular (PDC) measurement personalities are included in this option. The NADC measurements are structured according to the IS-136 TDMA standard. Measurements included in this option are:
- ACP
- EVM
- Occupied bandwidth (for PDC)

The personalities feature base station and mobile radio mode set-ups, as well as sync word search capability.

WiDEN/iDEN (Option HN1)

The WiDEN/iDEN measurement personality performs measurements to the Motorola WiDEN/iDEN specialized mobile radio format:
- Occupied bandwidth (OBW)
- ACPR
- Transmitter bit error rate (BER)
- Power vs. time (PvT)
... and CDMA measurement personalities.

W-CDMA (Option BAF)

The complexity of W-CDMA demands the flexibility and depth of demodulation capability provided by this personality. Perform the following measurements on the HPSK uplink or downlink QPSK signals:
- Code domain
- QPSK EVM
- Modulation accuracy (composite rho and EVM)
- Channel power
- Adjacent channel power leakage ratio (ACLR)
- Power control
- PV
- Intermodulation distortion
- Multicarrier power
- Spectrum emission mask
- OBW
- CCDF

This personality has the ability to automatically determine active channels, to synchronize with any W-CDMA channel, to display code domain power in a multi-rate view, and to demodulate down to the symbol level. Variable capture intervals and pre-defined test models enable the user to perform fast, accurate measurements for manufacturing or in-depth analysis for R&D.

HSDPA/HSUPA (Option 210)

Option 210 adds the following capabilities to W-CDMA Option BAF for HSDPA and HSUPA signal analysis for both downlink and uplink:
- Code domain analysis
 - Pre-defined test model 5
 - HS-PDSCH 16QAM/QPSK auto detection
 - Demodulation bits in binary/hexadecimal format
 - Adaptive modulation and coding support
 - HS-DPCCH power β
 - E-DPCCH/E-DPDCH power β
 - E-DPCCH in SF2 auto detection
- Modulation accuracy
 - Composite EVM for HSDPA/HSUPA signals

cdma2000 (Option B78)

The cdma2000 measurement personality offers the logical upgrade path from IS-95 to IS-2000 testing. Measurements support the forward and reverse links:
- Code domain
- QPSK EVM
- Modulation accuracy (composite rho and EVM)
- Channel power
- ACPR
- Intermodulation distortion
- Spectrum emission mask
- OBW
- CCDF

Advanced code domain analysis algorithms display Walsh codes for either Hadamard or OVSF coding schemes in a multi-rate view. Other capability includes code domain error, symbol EVM, symbol power versus time, active channel identification, variable PN offset, quasi-orthogonal functions and demodulated symbol bit displays after de-spreading.

1xEV-DV (Option 214)

This option provides modulation analysis functionalities for 1xEV-DV to cdma2000 Option B78.
- Code domain analysis
 - Auto-detection of modulation scheme 16QAM/8PSK/QPSK
 - Manual assigning of modulation scheme for adaptive modulated signal
 - Demodulated bits in binary/hexadecimal format
- Modulation accuracy
 - EVM and Rho measurements for 1xEV-DV signals
Expanding measurement potential...

cdmaOne (Option BAC)

Built on Agilent’s pioneering efforts in CDMA measurement techniques, this personality provides quick and easy measurement set-ups for the TIA/EIA-95, J-STD-008, IS-97D, and IS-98D band classes:

- Modulation accuracy (rho)
- Code domain
- Channel power
- ACPR
- Close-in spurious

1xEV-DO (Option 204)

With digital demodulation analysis, the 1xEV-DO measurement personality provides the most comprehensive, easy-to-use, 1xEV-DO measurement solution available in an analyzer. This personality, which performs measurements for both forward link and reverse link signals, provides key transmitter measurements for analyzing systems based on 3GPP2 1xEV-DO Revision-0 and Revision-A.

For forward link, the PvT mask and spurious emissions/ACP measurements support both the idle slot (burst signal) and active slot (full power signal). With the auto-burst search function, you can see the standard-based time mask for the 1xEV-DO idle slot in PvT. Code domain, modulation accuracy, and QPSK EVM can also measure Pilot, MAC, Preamble, and Data in QPSK/8PSK/16QAM modulation. Designed with flexibility in mind, this personality supports the unique 1xEV-DO forward link signals’ feature of time divisions multiplex (TDM). For reverse link, code domain, and modulation accuracy provide powerful modulation analysis functions for transmitter tests.

Forward link
- Channel power
- Power versus time mask
- Spurious emissions and ACP
- Intermodulation distortion
- OBW
- Code domain
- Modulation accuracy (waveform quality)
- QPSK EVM
- Power statistics (CCDF)

Reverse link
- Code domain
- Modulation accuracy (waveform quality)
IQ inputs (Option B7C)

Capitalizing on the E4406A’s demodulation capabilities by extending the measurement range to baseband. The baseband IQ input option enables engineers to measure the complete signal path of a receiver or transmitter and directly compare signals both before and after frequency conversion and IQ (de)modulation.

Ideally suited for R&D engineers and manufacturing environments, this option allows measurement of baseband I and Q signals in either balanced or unbalanced systems. Input configurations include 50-ohm unbalanced, 600-ohm balanced, and 1 M-ohm balanced or unbalanced – enabling a variety of systems to be directly tested without cumbersome and error-inducing conversion networks.

Applicable in-band 3GPP W-CDMA, HSUPA/HSUPA, cdma2000, 1xEV-DO, EDGE/GSM, and Basic mode measurements are supported via RF and IQ inputs, enabling engineers to track down signal degradation both before and after RF/IF conversion.

Additional features include auto calibration of input signals, variable dc offsets and a dc to 5-MHz input frequency range (10 MHz in I + jQ mode).

The data captured via baseband IQ inputs can be easily transferred to 89601A PC software for in-depth analysis.
The standards-based, one-button test capabilities of the E4406A can be expanded with the flexible digital demodulation and analysis capabilities of the Agilent 89601A PC software. This teaming provides fast and accurate data acquisition with powerful, flexible modulation analysis tools for both common and evolving communications standards.

The 89601A vector signal analysis software provides flexible tools for demodulating and analyzing even the most advanced digital modulations, whether or not they are contained in an established standard. It also provides deep troubleshooting when one-button tests on the VSA indicate a problem. Features include variable block size signal acquisition with user-selectable pulse search and synch words, and a user-controllable adaptive equalizer. The software allows you to use variable center frequency, symbol rate, filtering typing and alpha/BT. Supported modulation formats for both continuous and burst carriers include multi-level FSK, BPSK, QPSK, DQPSK, π/4 DQPSK, BPSK, multi-level QAM, multi-level VSB or DVBQAM, APSK 16/32, EDGE, and MSK. Most 3G standard formats are also supported, as are ZigBee, TETRA, and more.

The software also provides signal capture and analysis features, such as the capability to download signal capture files for playback through signal generators, and display high-speed spectrograms.

The 89601A software runs on a PC connected to the E4406A, via LAN or GPIB, and provides hardware control and results displays along with modulation analysis.
...with Agilent’s tradition of excellence.

Service and support

The speed and accuracy of the E4406A VSA is only a small part of what you get from Agilent. We strive to provide complete solutions that go beyond our customers’ expectations. Only Agilent offers the depth and breadth of enhancements, software, services, connectivity, accessibility, and support to help you reach your measurement objectives. For more information on the E4406A VSA, including product and application literature, visit our Web site at www.agilent.com/find/vsa

Pre-sales service
• rentals, leasing, and financing
• application engineering services

Post-sales service
• standard 1-year global warranty
• Worldwide Call Center and Service Center support network
• one-year calibration intervals
• firmware upgrades downloadable from the Web

PC connectivity
• 10 baseT LAN port
• floppy disk drive
• GPIB interface

Peripheral and product interfaces
• baseband IQ inputs
• parallel printer port
• printer support
• VGA monitor output
• Agilent 89601A vector signal analysis software

Training and access to information
• on-site user training
• factory service training
• Web-based support of frequently asked questions: www.agilent.com/find/vsa
• manuals on CD-ROM and on the Web

Software
• SCPI (Standard Commands for Programmable Instruments)
• PC-based performance verification and adjustment software
• IVI COM driver
Ordering information

E4406A vector signal analyzer

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4406A</td>
<td>7 MHz to 4 GHz vector signal analyzer</td>
</tr>
</tbody>
</table>

Option

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Demodulation</td>
</tr>
<tr>
<td>Measurements</td>
</tr>
<tr>
<td>E4406A-202 Edge with GSM measurement personality 1</td>
</tr>
<tr>
<td>E4406A-204 1xEV-DV measurement</td>
</tr>
<tr>
<td>E4406A-B78 cdma2000 measurement</td>
</tr>
<tr>
<td>E4406A-214 1xEV-DV measurement personality 2</td>
</tr>
<tr>
<td>E4406A-BAC cdmaOne measurement</td>
</tr>
<tr>
<td>E4406A-BAE NADC, PDC measurement</td>
</tr>
<tr>
<td>E4406A-BAF W-CDMA measurement</td>
</tr>
<tr>
<td>E4406A-210 HSDPA/HSUPA measurement</td>
</tr>
<tr>
<td>E4406A-BAH GSM measurement</td>
</tr>
<tr>
<td>E4406A-HN1 WiDEN/IDEN measurement</td>
</tr>
</tbody>
</table>

Inputs and outputs

| E4406A-300 321.4 MHz IF output |
| E4406A-B7C Baseband I/O inputs |

Calibration documentation

| E4406A-UK6 Commercial calibration certificate with test data |

Accessories

| E4406A-1CM Rack mount kit |
| E4406A-1CN Handle kit |
| E4406A-1CP Rack mount and handle kit |
| E4406A-1CR Rack slide kit |

Additional documentation

| E4406A-DB1 English manual set |
| E4406A-DBV Service documentation, component level |
| E4406A-DBW Service documentation, assembly level |

Warranty and service

| R-51B Return-to-Agilent warranty and service plan |

| For warranty and service of 5 years, please order 60 months of R-51B (quantity = 60). Standard warranty is 12 months. |

Calibration

| R-50C-001 Standard calibration (For 3 years, order 36 months of the appropriate calibration plan shown below. For 5 years, specify 60 months.) |
| R-50C-002 Standards compliant calibration (For 3 years, order 36 months of the appropriate calibration plan shown below. For 5 years, specify 60 months) |

PC software

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89601A</td>
<td>Vector signal analysis software</td>
</tr>
</tbody>
</table>

Agilent T&M Software and Connectivity

Agilent’s Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information.

Agilent IO Library Suite

Agilent’s IO libraries suite ships with the E4406A to help you quickly establish an error-free connection between your PC and instruments - regardless of the vendor. It provides robust instrument control and works with the software development environment you choose. For additional description of Agilent’s IO libraries suite features and installation requirements, please go to www.agilent.com/find/iosuite/data-sheet.

Agilent Technologies’ Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Email Updates

Visit www.agilent.com/find/emailupdates to get the latest information on the products and applications you select.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus.

Phone or Fax

- **United States:**
 - (tel) 800 829 4444
 - (fax) 800 829 4433
- **Canada:**
 - (tel) 877 884 4414
 - (fax) 800 746 4866
- **China:**
 - (tel) 880 810 0189
 - (fax) 800 820 2816
- **Europe:**
 - (tel) 031 20 547 2111
 - (fax) 812 56 7832
- **Japan:**
 - (tel) 812 56 7840
 - (fax) 812 56 7840
- **Korea:**
 - (tel) (080) 769 0800
 - (fax) (080) 769 0900
- **Latin America:**
 - (tel) 305 293 7500
 - (fax) 305 293 7500
- **Taiwan:**
 - (tel) 0800 047 866
 - (fax) 0800 286 331
- **Other Asia Pacific Countries:**
 - (tel) 6375 8100
 - (fax) 6375 8142

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2006 – 2002

Printed in USA, April 30, 2006

5968-7618E
The Agilent Technologies E4406A vector signal analyzer (VSA) is a full-featured transmitter tester designed to meet the test needs of wireless equipment developers and manufacturers. For wireless base station, mobile transmitters and their components, the easy-to-use E4406A provides the best combination of speed and accuracy for a wide range of digital modulation analysis capability. And, with multiformat capability (W-CDMA, HSDPA/HSUPA, cdma2000, 1xEV-DV, 1xEV-DO, cdmaOne, EDGE, GSM, NADC, and PDC) the E4406A is the ideal, flexible choice for your production line.

Easily configure one-button measurements with the simple, straight-forward menu structure and view them on the large, high-resolution color display. With built-in, standards-compliant tests and state-of-the-art digital IF technology, engineers can be confident that test results are accurate. And, when combined with the Agilent ESG series of digital RF signal generators, the E4406A VSA provides a powerful, transmit-receive test solution for wireless-equipment manufacturers.
Frequency

Frequency range
- **RF input**
 - 7 to 314 MHz and 329 MHz to 4 GHz
- **Baseband IQ inputs**
 - 0 Hz to 5 MHz

Frequency spans
- **Baseband IQ inputs**
 - 5 Hz to 5 MHz (Baseband I or Q inputs)
 - 10 Hz to 10 MHz (Composite I/Q)

Frequency setting resolution
- 1 Hz

Frequency reference
- **Accuracy**
 - ±[(time since last adjustment x aging rate) + temperature stability + calibration accuracy]
- **Initial calibration accuracy**
 - ±5 x 10^{-8}
- **Settability**
 - ±2 x 10^{-9}
- **Aging rate**
 - During any 24 hrs following 24-hr warm-up: ±5 x 10^{-10} (nominal)
 - Per year: ±1 x 10^{-7} (nominal)
- **Temperature stability**
 - ±5 x 10^{-8} variation from frequency at +25 °C over the temperature range of 0 to +55 °C
- **Warm-up time**
 - 1 hour (nominal)

Residual responses
- **RF input**
 - 50 Ω input terminated, 0 dB input attenuation, +18 dB ADC gain
 - 20 MHz to 2 GHz: ≤ −85 dBm
 - 2 to 4 GHz: ≤ −80 dBm
- **Baseband IQ inputs**
 - 50 Ω input terminated
 - 0 to 5 MHz: ≤ −90 dBm (typical)

Noise Sidebands (RF Input)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Specifications</th>
<th>Supplemental</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>≤ −85 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz</td>
<td>≤ −92 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz</td>
<td>≤ −102 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>100 kHz</td>
<td>≤ −131 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>600 kHz</td>
<td>≤ −138 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>≤ −141 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>6.0 MHz</td>
<td>≤ −145 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>10.0 MHz</td>
<td>≤ −145 dBc/Hz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Specifications</th>
<th>Supplemental</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>≤ −81 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz</td>
<td>≤ −87 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz</td>
<td>≤ −96 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>100 kHz</td>
<td>≤ −125 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>600 kHz</td>
<td>≤ −136 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>≤ −140 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>6.0 MHz</td>
<td>≤ −146 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>10.0 MHz</td>
<td>≤ −146 dBc/Hz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Specifications</th>
<th>Supplemental</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>≤ −75 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz</td>
<td>≤ −82 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz</td>
<td>≤ −86 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>100 kHz</td>
<td>≤ −118 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>600 kHz</td>
<td>≤ −132 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>≤ −137 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>6.0 MHz</td>
<td>≤ −141 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>10.0 MHz</td>
<td>≤ −141 dBc/Hz</td>
<td></td>
</tr>
</tbody>
</table>

Noise Sidebands1 (Baseband IQ Inputs)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Specifications</th>
<th>Supplemental</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kHz</td>
<td>≤ −120 dBc/Hz (typical)²</td>
<td></td>
</tr>
<tr>
<td>10 kHz</td>
<td>≤ −133 dBc/Hz (typical)²</td>
<td></td>
</tr>
<tr>
<td>100 kHz</td>
<td>≤ −134 dBc/Hz (typical)²</td>
<td></td>
</tr>
<tr>
<td>1.0 MHz</td>
<td>≤ −135 dBc/Hz (nominal)</td>
<td></td>
</tr>
<tr>
<td>5.0 MHz</td>
<td>≤ −135 dBc/Hz (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

1. No DC offset applied
2. 100 percent of Option B7C baseband IQ assemblies are measured in the factory. More than 80 percent of these instruments exceed this typical specification.
Amplitude

The following amplitude specifications apply for all measurements unless otherwise noted within the measurement specification.

RF input
- Maximum measurement power: +30 dBm (1W)
- Maximum safe DC voltage: ±26 Vdc
- Maximum safe input power: +35 dBm (3.16W)

Baseband IQ inputs
- Input ranges: –5 to +13 dBm in four ranges of 6 dB steps: –5 dBm, +1 dBm, +7 dBm, +13 dBm
- Input impedance: 50 Ω, 600 Ω, 1 MΩ
- Maximum safe voltage: ±5 V (DC + AC)

Input attenuator
- RF input range: 0 to +40 dB
- Step size: 1 dB steps
- Accuracy at 50 MHz: ±0.3 dB relative to 10 dB attenuation

First LO emission from RF input
- \(f_{\text{emission}} = \text{center frequency} \leq (-23 \text{ dBm} - \text{input frequency}) \) (nominal)

Third-order intermodulation distortion (RF input)
- Input power: \(\leq +27 \text{ dBm} \), Pre-ADC Filter ON

Amplitude accuracy

RF input
- (Relative to –2 dBm at the input mixer)
 - No averaging
 - \(-2 \text{ to } -78 \text{ dBm} \) \±0.25 dB (±0.15 dB, typical)
 - \(-78 \text{ to } -88 \text{ dBm} \) \±0.70 dB (±0.40 dB, typical)
 - \(-88 \text{ to } -98 \text{ dBm} \) \±1.20 dB (±0.80 dB, typical)
 - With 10 averages
 - \(-78 \text{ to } -88 \text{ dBm} \) \±0.25 dB (nominal)
 - \(-88 \text{ to } -98 \text{ dBm} \) \±0.35 dB (nominal)

Absolute power measurement accuracy

RF input
- +18 to +30 °C
- 0 to 40 dB input attenuation
 - \((-2 \text{ to } -28 \text{ dBm}) + \text{ attenuation} \)
 - 810 to 960 MHz \±0.60 dB (±0.4 dB, typical)
 - 1710 to 2205 MHz \±0.60 dB (±0.4 dB, typical)
 - 1428 to 1503 MHz \±0.60 dB (±0.5 dB, typical)
 - 10 dB input attenuation
 - +8 to –18 dBm
 - 400 to 2205 MHz \±0.75 dB
- 0 to 20 dB input attenuation
 - \((-2 \text{ to } -28 \text{ dBm}) + \text{ attenuation} \)
 - 7 to 1000 MHz \±1.0 dB
 - 1000 to 2205 MHz \±1.3 dB
 - 2205 to 4000 MHz \±1.8 dB

Baseband IQ inputs
- Input impedance = 50 Ω, \±0.6 dB (typical)
 - all ranges
- Input impedance = 600 Ω, \±0.75 dB
 - 400 to 2205 MHz
- Input impedance = 1 MΩ, \±0.8 dB
 - 0 to 20 dB input attenuation
 - \((-2 \text{ to } -28 \text{ dBm}) + \text{ attenuation} \)
 - 7 to 1000 MHz \±0.6 dB (nominal)
 - 1000 to 2205 MHz \±0.6 dB (nominal)
 - 2205 to 4000 MHz \±0.6 dB (nominal)

Amplitude accuracy

RF input
- (Relative to –12 dBm at the input mixer)
 - No averaging
 - \(-78 \text{ to } -88 \text{ dBm} \) \±0.25 dB (±0.15 dB, typical)
 - \(-88 \text{ to } -98 \text{ dBm} \) \±0.70 dB (±0.40 dB, typical)
 - \(-98 \text{ to } -108 \text{ dBm} \) \±1.20 dB (±0.80 dB, typical)
 - With 10 averages
 - \(-78 \text{ to } -88 \text{ dBm} \) \±0.25 dB (nominal)
 - \(-88 \text{ to } -98 \text{ dBm} \) \±0.35 dB (nominal)

3. 100 percent of Option B7C baseband IQ assemblies are measured in the factory. More than 80 percent of these instruments exceed this typical specification.
Amplitude linearity
Baseband IQ inputs
0 to –35 dB below range ±0.17 dB (typical)
–35 to –55 dB below range ±1.0 dB (typical)

Displayed average noise level
RF input
Input terminated in 50 Ω, 0 dB attenuation, 1 kHz RBW, 10 kHz span, +18 dB ADC gain
7 to 20 MHz –103 dBm (–111 dBm, typical)
20 to 2000 MHz –106 dBm (–111 dBm, typical)
2000 to 2700 MHz –103 dBm (–108 dBm, typical)
2700 to 4000 MHz –98 dBm (–104 dBm, typical)

Baseband IQ inputs
Input terminated in 50 Ω, 1 kHz RBW, 1 kHz to 5 MHz
+13 dBm range –100 dBm, (typical)
+7 dBm range –105 dBm, (typical)
+1 dBm range –108 dBm, (typical)
–5 dBm range –110 dBm, (typical)

DC offset
Baseband IQ inputs
After auto-zero –55 dB below range, (typical)
Compensation for customer DC offset ≤ ±2.0 Vdc (typical)
Offset accuracy ±2.0% of range (nominal)

Channel match
Baseband IQ inputs
Amplitude match ±0.25 dB (typical)
0 to 5.0 MHz
Phase match ±2.0 degrees (typical)
0 to 5.0 MHz

Crosstalk
Baseband IQ inputs
Input impedance = 50 Ω < –60 dB (typical)
Input impedance = 600 Ω < –52 dB (typical)

Common mode rejection
Baseband IQ inputs
600 Ω balanced inputs
0 to 0.5 MHz < –50 dB (typical)
> 0.5 to 5.0 MHz < –35 dB (typical)

Measurements
Waveform measurement
Range at RF input
Maximum +30 dBm (1 W)
Minimum Displayed average noise level
Range at IQ input
Maximum (50 Ω input) +13 dBm (20 mW)
Maximum (600 Ω, 1 MΩ input) 1 V
Minimum Displayed average noise level
Sweep time range
RBW < 7.5 MHz 10 µs to 200 ms
RBW < 1 MHz 10 µs to 400 ms
RBW < 100 kHz 10 µs to 2 s
RBW < 10 kHz 10 µs to 20 s
Time record length 2 to > 900,000 points (nominal)
Resolution bandwidth
1, 1.5, 2, 3, 5, 7.5, 10 sequence, or arbitrary bandwidth (user-definable)
Gaussian filter 10 Hz to 8 MHz
Flat filter 10 Hz to 10 MHz
Averaging
Average number 1 to 10,000
Average mode Exponential, repeat
Average type Power average (RMS), log-power average (video), maximum, minimum
Displays
RF input Signal envelope, I/Q waveform, I/Q polar
Baseband IQ input Signal envelope, linear envelope, I/Q waveform, I and Q waveform, I/Q polar
Markers Normal, delta, band power

4. 100 percent of Option B7C baseband IQ assemblies are measured in the factory. More than 80 percent of these instruments exceed this typical specification.
Spectrum measurement

<table>
<thead>
<tr>
<th>Range at RF input</th>
<th>Minimum Displayed average noise level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum +30 dBm (1 W)</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>Displayed average noise level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range at IQ input</th>
<th>Minimum Displayed average noise level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum (50 Ω input) +13 dBm (20 mW)</td>
<td></td>
</tr>
<tr>
<td>Maximum (600 Ω, 1 MΩ input) 0 dBV</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>Displayed average noise level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Span range</th>
<th>RF input 10 Hz to 10 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF input</td>
<td>10 Hz to 10 MHz</td>
</tr>
<tr>
<td>Composite I/Q input 10 Hz to 10 MHz</td>
<td></td>
</tr>
<tr>
<td>Baseband I or Q only inputs 10 Hz to 5 MHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution BW range overall</th>
<th>100 mHz to 3 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution BW range</td>
<td>1, 1.5, 2, 3, 5, 7.5, 10 sequence or arbitrary bandwidth user-definable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-FFT filter</th>
<th>Gaussian, flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Auto, manual 1 Hz to 10 MHz</td>
</tr>
<tr>
<td>BW</td>
<td>Flat top; (high amplitude accuracy); Uniform; Hanning; Hamming; Gaussian; Blackman; Blackman-Harris; Kaiser-Bessel 70, 90, 110</td>
</tr>
</tbody>
</table>

| FFT window | Flat top; (high amplitude accuracy); Uniform; Hanning; Hamming; Gaussian; Blackman; Blackman-Harris; Kaiser-Bessel 70, 90, 110 |

<table>
<thead>
<tr>
<th>Averaging</th>
<th>1 to 10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number</td>
<td>1 to 10,000</td>
</tr>
<tr>
<td>Average mode</td>
<td>Exponential, repeat</td>
</tr>
<tr>
<td>Average type</td>
<td>Power average (RMS), log-power average (video), maximum, minimum, voltage average</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displays</th>
<th>RF input Spectrum, linear spectrum, I/Q waveform, spectrum and I/Q waveform, I/Q polar, adjacent channel power, power stat CCDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseband IQ inputs</td>
<td>Spectrum, linear spectrum, I/Q waveform, spectrum and I/Q waveform, I/Q polar, power stat CCDF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Markers</th>
<th>Normal, delta, band power, noise</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Measurement resolution</th>
<th>Displayed 0.01 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed</td>
<td>0.01 dB</td>
</tr>
<tr>
<td>Remote query</td>
<td>0.001 dB</td>
</tr>
</tbody>
</table>

Trigger

<table>
<thead>
<tr>
<th>Trigger sources</th>
<th>RF input Free run (immediate), video (IF envelope), RF burst (wideband), frame timer, external front, external rear, line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseband IQ inputs</td>
<td>Free run (immediate), video (IQ envelope), external front input, external rear input, frame timer, line</td>
</tr>
<tr>
<td>Delay range -500 to +500 ms</td>
<td></td>
</tr>
<tr>
<td>Delay accuracy ±33 ns</td>
<td></td>
</tr>
<tr>
<td>Delay resolution 33 ns</td>
<td></td>
</tr>
<tr>
<td>Trigger slope Positive, negative</td>
<td></td>
</tr>
<tr>
<td>Holdoff range 0 to 500 ms</td>
<td></td>
</tr>
<tr>
<td>Holdoff resolution 1 μs</td>
<td></td>
</tr>
</tbody>
</table>

RF burst trigger

<table>
<thead>
<tr>
<th>Peak carrier power range at RF input</th>
<th>+30 to −40 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger level range 0 to −25 dB (relative to signal peak)</td>
<td></td>
</tr>
<tr>
<td>Bandwidth > 15 MHz (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

Video (IF envelope)

<table>
<thead>
<tr>
<th>Trigger range</th>
<th>+50 to −200 dB</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Trigger sources</th>
<th>RF input Free run (immediate), video (IF envelope), RF burst (wideband), frame timer, external front, external rear, line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseband IQ inputs</td>
<td>Free run (immediate), video (IQ envelope), external front input, external rear input, frame timer, line</td>
</tr>
<tr>
<td>Delay range -500 to +500 ms</td>
<td></td>
</tr>
<tr>
<td>Delay accuracy ±33 ns</td>
<td></td>
</tr>
<tr>
<td>Delay resolution 33 ns</td>
<td></td>
</tr>
<tr>
<td>Trigger slope Positive, negative</td>
<td></td>
</tr>
<tr>
<td>Holdoff range 0 to 500 ms</td>
<td></td>
</tr>
<tr>
<td>Holdoff resolution 1 μs</td>
<td></td>
</tr>
</tbody>
</table>

RF burst trigger

<table>
<thead>
<tr>
<th>Peak carrier power range at RF input</th>
<th>+30 to −40 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger level range 0 to −25 dB (relative to signal peak)</td>
<td></td>
</tr>
<tr>
<td>Bandwidth > 15 MHz (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

Video (IF envelope)

<table>
<thead>
<tr>
<th>Trigger range</th>
<th>+50 to −200 dB</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Trigger sources</th>
<th>RF input Free run (immediate), video (IF envelope), RF burst (wideband), frame timer, external front, external rear, line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseband IQ inputs</td>
<td>Free run (immediate), video (IQ envelope), external front input, external rear input, frame timer, line</td>
</tr>
<tr>
<td>Delay range -500 to +500 ms</td>
<td></td>
</tr>
<tr>
<td>Delay accuracy ±33 ns</td>
<td></td>
</tr>
<tr>
<td>Delay resolution 33 ns</td>
<td></td>
</tr>
<tr>
<td>Trigger slope Positive, negative</td>
<td></td>
</tr>
<tr>
<td>Holdoff range 0 to 500 ms</td>
<td></td>
</tr>
<tr>
<td>Holdoff resolution 1 μs</td>
<td></td>
</tr>
</tbody>
</table>

RF burst trigger

<table>
<thead>
<tr>
<th>Peak carrier power range at RF input</th>
<th>+30 to −40 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger level range 0 to −25 dB (relative to signal peak)</td>
<td></td>
</tr>
<tr>
<td>Bandwidth > 15 MHz (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

Video (IF envelope)

<table>
<thead>
<tr>
<th>Trigger range</th>
<th>+50 to −200 dB</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Trigger sources</th>
<th>RF input Free run (immediate), video (IF envelope), RF burst (wideband), frame timer, external front, external rear, line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseband IQ inputs</td>
<td>Free run (immediate), video (IQ envelope), external front input, external rear input, frame timer, line</td>
</tr>
<tr>
<td>Delay range -500 to +500 ms</td>
<td></td>
</tr>
<tr>
<td>Delay accuracy ±33 ns</td>
<td></td>
</tr>
<tr>
<td>Delay resolution 33 ns</td>
<td></td>
</tr>
<tr>
<td>Trigger slope Positive, negative</td>
<td></td>
</tr>
<tr>
<td>Holdoff range 0 to 500 ms</td>
<td></td>
</tr>
<tr>
<td>Holdoff resolution 1 μs</td>
<td></td>
</tr>
</tbody>
</table>

RF burst trigger

<table>
<thead>
<tr>
<th>Peak carrier power range at RF input</th>
<th>+30 to −40 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger level range 0 to −25 dB (relative to signal peak)</td>
<td></td>
</tr>
<tr>
<td>Bandwidth > 15 MHz (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

Video (IF envelope)

| Trigger range | +50 to −200 dB |
W-CDMA (Option E4406A-BAF)

HSDPA/HSUPA (Option E4406A-210)

Channel power measurement

The channel power measurement measures the total RMS power in a user-specified bandwidth. The following specifications apply for the default bandwidth of 3.84 MHz for the 3GPP standard.

- Minimum power at RF input: –70 dBm (nominal)
- Absolute power accuracy: 0.63 dB (±0.41 dB, typical)
- Measurement floor: –73 dBm (nominal)

ACPR measurement (ACLR)

The adjacent channel power ratio (ACPR) measurement measures up to five pairs of offset channels and relates them to the carrier power. The measurement result is a ratio of the channel power to the power in each offset. The results can be displayed as a ratio to the total power in each bandwidth, or as a ratio of the power spectral density. Simulated spectrum analyzer mode is for those who are accustomed to spectrum analyzers.

- Minimum power at RF input: –27 dBm (nominal)
- ACPR accuracy: RRC weighted, 3.84 MHz noise bandwidth

Radio Offset frequency Specification

- MS (UE) 5 MHz: ±0.20 dB, at ACPR range of –30 to –36 dBc with optimum mixer level
- MS (UE) 10 MHz: ±0.30 dB, at ACPR range of –40 to –46 dBc with optimum mixer level
- BTS 5 MHz: ±0.93 dB, at ACPR range of –42 to –48 dBc with optimum mixer level
- BTS 10 MHz: ±0.82 dB, at ACPR range of –47 to –53 dBc with optimum mixer level
- BTS 5 MHz: ±0.39 dB, at –48 dBc, non-coherent ACPR

Dynamic range

- RRC weighted, 3.84 MHz noise bandwidth

Offset frequency

- 5 MHz: –68 dB (nominal)
- 10 MHz: –72 dB (nominal)

For more detail, please refer to the E4406A specifications that can be found at www.agilent.com/find/vsa

Power statistics CCDF measurement

The complementary-cumulative distribution function (CCDF) traces provide you with how much time the waveform spends at or above a given power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

- Minimum power at RF input: –40 dBm, average (nominal)
- Histogram resolution: 0.01 dB

Code domain measurement

The code domain measurement provides a tremendous amount of information about the in-channel characteristics of the W-CDMA signal. Code domain power (CDP) view directly informs the user of the active channels with their individual channel powers. The CDP view also leads you to symbol rate analysis such as symbol rate EVM and symbol power versus time.

- Code domain power
 - 25 to 35°C
 - 95% confidence
 - Minimum power at RF input: –70 dBm (nominal)
 - Relative code domain accuracy: Using Test Model 1 with 32 DPCCH signal
 - ±0.015 dB
 - Code domain power between 0 and –10 dBc
 - ±0.08 dB
 - Code domain power between –10 and –30 dBc
 - ±0.15 dB
 - Code domain power between –30 to –40 dBc

Symbol power vs. time

- Minimum power at RF input: –45 dBm (nominal)
- Accuracy: Using Test Model 1 with 32 DPCCH signal
 - ±0.10 dB
 - Code domain power between 0 and –25 dBc
 - ±0.50 dB
 - Code domain power between –25 to –40 dBc

Symbol error vector magnitude

- Minimum power at RF input: –45 dBm (nominal)
- Accuracy: Using Test Model 1 with 32 DPCCH signal
 - ±1.0%
 - Code domain power between 0 and –25 dBc

5. Nominals in using test model 5 with 8 HS-PDSCH.
QPSK EVM measurement

The QPSK EVM measurement measures the modulation quality of QPSK modulated signal. This measurement provides an IQ constellation diagram, error vector magnitude (EVM) in RMS and peak as well as magnitude error versus chip, phase error versus chip, and EVM versus chip.

QPSK EVM

Minimum power

- QPSK selected
- Minimum power
 - QPSK
 - at RF input
 - –20 dBm (nominal)

EVM

- Operating range
 - 0 to 25% (nominal)
- Floor
 - 1.5% (nominal)
- Accuracy
 - ±1.0% (nominal) at EVM of 10%

I/Q origin offset

- Range
 - –10 to –50 dBc (nominal)

Frequency error

- Range
 - ±300 kHz (nominal)
- Accuracy
 - ±10 Hz (nominal) + (transmitter frequency x frequency reference accuracy)

QPSK EVM

Minimum power

- 12.2k RMC selected
- Minimum power
 - at RF input
 - –20 dBm (nominal)

EVM

- Operating range
 - 0 to 20% (nominal)
- Floor
 - 1.5% (nominal)
- Accuracy
 - ±1.0% (nominal) at EVM of 10%

I/Q origin offset

- Range
 - –10 to –50 dBc (nominal)

Frequency error

- Range
 - ±20 kHz (nominal)
- Accuracy
 - ±10 Hz (nominal) + (transmitter frequency x frequency reference accuracy)

Modulation accuracy measurement (composite EVM)

Composite EVM is a measure of the performance of a W-CDMA transmitter’s modulation circuitry. Composite EVM can be measured for a pilot channel along with other channel structures, i.e. multiple traffic channels.

Minimum power

- –70 dBm (nominal)

Composite EVM

- Using Test Model 4
- Range
 - 0 to 25%\(^6\)
- Floor
 - 1.5%\(^6\)
- Accuracy
 - ±1.0%\(^6\)

Peak code domain error

- Using Test Model 3 with 16 DPCH w/spreading code of 256
- Accuracy
 - ±1.0 dB (nominal)

I/Q origin offset

- Range
 - –10 to –50 dBc (nominal)

Frequency error

- Specified for CPICH power \(\geq –15\) dBc
- Range
 - ±500 Hz
- Accuracy
 - ±2 Hz + (transmitter frequency x frequency reference accuracy)

Time offset

- Absolute frame offset
 - ±150 nsec
- Accuracy
 - ±5.0 ns (nominal)
- Relative frame offset
 - ±1.25 nsec
- Accuracy
 - (for STTD diff mode)

Intermodulation distortion measurement

The intermodulation distortion measurement determines the third order and fifth order intermodulation products caused by nonlinear devices in the transmitter. This measurement is made with two single tones or a single tone and a modulated W-CDMA signal. The results are displayed in relative power to the carrier in dBc or in absolute power in dBm.

Minimum carrier power

- –20 dBm (nominal)

\(^6\) Nominals in using test model 5 with 8 HS-PDSCH.
Power vs. time and power control measurement

Absolute power measurement
- Using 5 MHz resolution bandwidth

Accuracy
- 0 to –20 dBm ±0.7 dB (nominal)
- –20 to –60 dBm ±1.0 dB (nominal)

Relative power measurement

Accuracy
- Step range ± 1.5 dB ±0.1 dB (nominal)
- Step range ± 3.0 dB ±0.15 dB (nominal)
- Step range ± 4.5 dB ±0.2 dB (nominal)
- Step range ± 26.0 dB ±0.3 dB (nominal)

Multicarrier power measurement

This measurement is used for adjusting multicarrier power amplifiers to transmit well balanced multiple carriers. The measurement is similar to a combination of those for ACPR and intermodulation distortion product measurements giving in-channel and out-of-channel performance results. The results are displayed for the different frequency offsets either in relative power to the carrier in dBc or in absolute power in dBm.

Minimum carrier power
- –15 dBm (nominal)

ACPR dynamic range, two carriers
- RRC weighted, 3.84 MHz noise bandwidth
- 5 MHz offset –64 dB (nominal)
- 10 MHz offset –68 dB (nominal)

ACPR accuracy, two carriers
- 5 MHz offset ±0.70 dB (nominal)
- –48 dBc ACPR

Spectrum emission mask measurement

The spectrum emission mask measurement measures the in-channel and out-of-channel spurious emissions to provide useful figures of merit for spectral regrowth and emissions produced by components and circuit blocks. Up to five pairs of offsets/regions can be defined in which the user can specify the start and stop frequencies, resolution bandwidth, and the start and stop amplitudes of the mask.

Minimum power
- –20 dBm (nominal)

Dynamic range, relative
- 2.515 MHz offset –77.9 dB (–82.8 dB, typical)
- 1980 MHz region –72.2 dB (–77.2 dB, typical)

Sensitivity, absolute
- 2.515 MHz offset –88.9 dBm (–93.9 dBm, typical)
- 1980 MHz region –72.9 dBm (–77.9 dBm, typical)

Accuracy
- Display = Abs Peak Pwr ±0.60 dB (±0.40 dB, typical)
- Display = Rel Peak Pwr ±0.25 dB

Occupied bandwidth measurement

Occupied bandwidth (OBW) measurement measures the frequency bandwidth corresponding to 99 percent of the total transmitted power.

Minimum carrier power
- –20 dBm (nominal)

Frequency resolution
- 100 Hz

Frequency accuracy
- $\sqrt{N_{avg}}$ (nominal)
Conformance with 3GPP TS 25.141 base station requirements for a manufacturing environment

<table>
<thead>
<tr>
<th>Sub-clause</th>
<th>Name</th>
<th>3GPP required test instrument tolerance</th>
<th>Instrument tolerance interval</th>
<th>Supplemental information</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>Maximum output power</td>
<td>±0.7 dB (95%)</td>
<td>±0.29 dB (95%)</td>
<td>±0.63 dB (100%)</td>
</tr>
<tr>
<td>6.2.2</td>
<td>CPICH power accuracy</td>
<td>±0.8 dB (95%)</td>
<td>±0.30 dB (95%)</td>
<td>–10 dB CDP</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Frequency error</td>
<td>±12 Hz (95%)</td>
<td>±10 Hz (100%)</td>
<td>Freq ref locked</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Power control steps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-dB step</td>
<td>±0.1 dB (95%)</td>
<td>±0.03 dB (95%)</td>
<td>Test Model 2</td>
</tr>
<tr>
<td></td>
<td>0.5-dB step</td>
<td>±0.1 dB (95%)</td>
<td>±0.03 dB (95%)</td>
<td>Test Model 2</td>
</tr>
<tr>
<td></td>
<td>Ten 1-dB steps</td>
<td>±0.1 dB (95%)</td>
<td>±0.03 dB (95%)</td>
<td>Test Model 2</td>
</tr>
<tr>
<td></td>
<td>Ten 0.5-dB steps</td>
<td>±0.1 dB (95%)</td>
<td>±0.03 dB (95%)</td>
<td>Test Model 2</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Power dynamic range</td>
<td>±1.1 dB (95%)</td>
<td>±0.50 dB (95%)</td>
<td></td>
</tr>
<tr>
<td>6.4.4</td>
<td>Total power dynamic range</td>
<td>±0.3 dB (95%)</td>
<td>±0.015 dB (95%)</td>
<td>Ref –35 dBm at mixer</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Occupied bandwidth</td>
<td>±100 kHz (95%)</td>
<td>±38 kHz (95%)</td>
<td>10 averages</td>
</tr>
<tr>
<td>6.5.2.1</td>
<td>Spectrum emission mask</td>
<td>±1.5 dB (95%)</td>
<td>±0.59 dB (95%)</td>
<td>Absolute peak</td>
</tr>
<tr>
<td>6.5.2.2</td>
<td>ACLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 MHz offset</td>
<td>±0.8 dB (95%)</td>
<td>±0.34 dB (95%)</td>
<td>±0.93 dB (100%)</td>
</tr>
<tr>
<td></td>
<td>10 MHz offset</td>
<td>±0.8 dB (95%)</td>
<td>±0.40 dB (95%)</td>
<td>±0.82 dB (100%)</td>
</tr>
<tr>
<td>6.7.1</td>
<td>EVM</td>
<td>±2.5% (95%)</td>
<td>±1.0% (95%)</td>
<td>Range 15 to 20%</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Peak code domain error</td>
<td>±1.0 dB (95%)</td>
<td>±1.0 dB (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

Conditions
25 to 35 °C

Derived tolerances
95th percentile
100% limit tested

Calibration uncertainties included
cdma2000 (Option E4406A-B78)

1xEV-DV (Option E4406A-214)

Channel power measurement

Range at RF input: +30 to –80 dBm
Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C
+30 to –28 dBm: ±0.6 dB
–28 to –50 dBm: ±0.8 dB
–50 to –80 dBm: ±1.0 dB

ACPR measurement

Power range: +30 to –20 dBm
Dynamic range (referenced to average power of carrier in 1.25 MHz BW):

<table>
<thead>
<tr>
<th>Offset frequency</th>
<th>Integ BW</th>
<th>Dynamic range</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 kHz (BTS)</td>
<td>30 kHz</td>
<td>–82 dBc</td>
</tr>
<tr>
<td>885 kHz (MS)</td>
<td>30 kHz</td>
<td>–82 dBc</td>
</tr>
<tr>
<td>1.98 MHz</td>
<td>30 kHz</td>
<td>–85 dBc</td>
</tr>
</tbody>
</table>

Relative accuracy: ±0.9 dB

Power statistics CCDF measurement

Range at RF input:
Maximum: +30 dBm (average)
+40 dBm (peak)
Minimum: –40 dBm (average)

QPSK EVM measurement

Range at RF input: +30 to –20 dBm

<table>
<thead>
<tr>
<th>EVM</th>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 25% (nominal)</td>
<td>±1.5% (nominal)</td>
</tr>
<tr>
<td>Floor</td>
<td>1.5% (nominal)</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.0% (nominal)</td>
<td></td>
</tr>
</tbody>
</table>

I/Q origin offset:
Range: –10 to –50 dBc (nominal)

Frequency error:
Range: ±500 Hz (nominal)
Accuracy: ±10 Hz (nominal) + (transmitter frequency x frequency reference accuracy)

Symbol error vector magnitude

Range at RF input: +30 to –40 dBm
Accuracy: ±0.3 dB (spread channel power is within 20 dB of total power; averaged power over a slot)

Spectrum emission mask measurement

Range at RF input: +30 to –20 dBm

<table>
<thead>
<tr>
<th>Spectrum emission</th>
<th>≤ –136 dBc/Hz at 1 MHz offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power range</td>
<td>(nominal)</td>
</tr>
</tbody>
</table>

Relative accuracy: ±1.0 dB
Resolution: 0.01 dB display resolution

Occupied bandwidth measurement

Range at RF input: +30 to –20 dBm
Frequency:
Resolution: 1 kHz
Accuracy: ±3 kHz

7. Nominals for 8PSK/16QAM modulated code signal.
Modulation accuracy measurement (composite rho)
Range at RF input +30 to −50 dBm

EVM
Range 0 to 25%
Floor 2.0% or less 8
Resolution 0.01% display resolution

I/Q origin offset
Range −10 to −50 dBC
Resolution 0.02 dB display resolution

Frequency error
Range ±900 Hz
Accuracy ±10 Hz + transmitter accuracy (nominal)
Resolution ±0.01 Hz display resolution

Pilot time offset
Range −13.33 to +13.33 ms
Accuracy ±250 ns
Resolution 10 ns

Code domain timing
Range ±200 ns
Accuracy ±1.25 ns
Resolution 0.1 ns

Code domain phase
Range ±200 mrad
Accuracy ±10 mrad
Resolution 0.1 mrad

1xEV-DO (Option E4406A-204)

Channel power measurement
1.23 MHz integration BW
Range at RF input +30 dBm to −80 dBm
Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C
+30 to −28 dBm ±0.6 dB at RF input
−28 to −50 dBm ±0.8 dB at RF input
−50 to −80 dBm ±1.0 dB at RF input

Power statistics CCDF measurement
Range at RF input
Maximum +30 dBm (average)
+40 dBm (peak)
Minimum −40 dBm (average)

Code domain measurement
For Pilot, 2 MAC channels, 16 channels of QPSK data
Code domain power
Range at RF input +30 to −50 dBm (nominal)
Accuracy ±0.3 dB (nominal, spread
(Pilot, MAC, Data channel power is within 20 dB QPSK/Data 8PSK) of total power)

8. Nominal for 1xEV-DV signal.
QPSK EVM measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range at RF input</th>
<th>Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVM</td>
<td>+30 to –20 dBm (nominal)</td>
<td>+30 to –28 dBm at RF input ±0.6 dB (nominal)</td>
</tr>
<tr>
<td>I/Q origin offset</td>
<td>–10 to –50 dBc (nominal)</td>
<td>–28 to –50 dBm at RF input ±0.8 dB (nominal)</td>
</tr>
<tr>
<td>Frequency error</td>
<td>±500 Hz (nominal)</td>
<td>–50 to –80 dBm at RF input ±1.0 dB (nominal)</td>
</tr>
</tbody>
</table>

Power vs. time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range at RF input</th>
<th>Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVM</td>
<td>+30 to –80 dBm (nominal)</td>
<td>+30 to –28 dBm at RF input ±0.6 dB (nominal)</td>
</tr>
<tr>
<td>I/Q origin offset</td>
<td>–10 to –50 dBc (nominal)</td>
<td>–28 to –50 dBm at RF input ±0.8 dB (nominal)</td>
</tr>
<tr>
<td>Frequency error</td>
<td>±500 Hz (nominal)</td>
<td>–50 to –80 dBm at RF input ±1.0 dB (nominal)</td>
</tr>
</tbody>
</table>

Modulation accuracy measurement (waveform quality)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range at RF input</th>
<th>Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency error</td>
<td>±400 Hz (nominal)</td>
<td>±3 kHz at 1 kHz resolution</td>
</tr>
</tbody>
</table>

Intermodulation distortion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range at RF input</th>
<th>Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency error</td>
<td>±400 Hz (nominal)</td>
<td>±3 kHz at 1 kHz resolution</td>
</tr>
</tbody>
</table>

Spurious emissions & ACP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range at RF input</th>
<th>Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency error</td>
<td>±400 Hz (nominal)</td>
<td>±3 kHz at 1 kHz resolution</td>
</tr>
</tbody>
</table>

Occupied bandwidth measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range at RF input</th>
<th>Absolute power accuracy for in-band signal (excluding mismatch error), 18 °C to 30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency error</td>
<td>±400 Hz (nominal)</td>
<td>±3 kHz at 1 kHz resolution</td>
</tr>
</tbody>
</table>
cdmaOne (Option E4406A-BAC)

Channel power measurement
Range at RF input +30 to –80 dBm
Integration bandwidth 1 kHz to 10 MHz
range (default is 1.23 MHz)
Absolute power accuracy for in-band signal
(excluding mismatch error), 18 °C to 30 °C
RF input
+30 to –28 dBm ±0.6 dB (±0.4 dB, typical)
–28 to –50 dBm ±0.8 dB (±0.7 dB, typical)
–50 to –80 dBm ±1.0 dB (±0.9 dB, typical)
Relative power accuracy (same channel, different transmit
power, input attenuator fixed) input level change
0 to –76 dB ±0.2 dB (±0.1 dB, typical)

Code domain measurement (base station)
Range at RF input +30 to –30 dBm
Measurement interval 0.25 to 30 ms
range
Code domain power (measurement interval 1.25 ms)
Display dynamic range 50 dB
Accuracy ±0.3 dB (Walsh channel power
within 20 dB of total power)
Resolution 0.01 dB
Other reported power parameters
Average active traffic, maximum
inactive traffic, average
inactive traffic, pilot, paging,
sync channels
Frequency error accuracy ±10 Hz (excludes frequency
reference)
Pilot time offset (from even second signal to start of
PN sequence)
Range –13.33 to +13.33 ms
Accuracy ±250 ns
Resolution 10 ns
Code domain timing (pilot to code-channel time tolerance)
Range ±200 ns
Accuracy ±10 ns
Resolution 0.1 ns
Code domain phase (pilot to code-channel phase tolerance)
Range ±200 mrad
Accuracy ±20 mrad
Resolution 0.1 mrad
Modulation accuracy (rho) measurement

- Power range at RF input: +30 to –40 dBm
- Measurement interval range: 0.25 to 30 ms

Rho (waveform quality) (usable range 0.5 to 1.0)
- Range: 0.9 to 1.0
- Accuracy: ±0.005
- Resolution: 0.0001

Frequency error (frequency error excludes instrument time base error)
- Input frequency error range: ±900 Hz
- Accuracy: ±10 Hz + (transmitter frequency x frequency reference accuracy)
- Resolution: 0.1 Hz

Pilot time offset (from even second signal to start of PN sequence)
- Range: –13.33 to +13.33 ms
- Accuracy: ±250 ns
- Resolution: 10 ns

EVM
- Floor: 2.5% (1.8%, typical)
- Accuracy: ±0.5%
- Resolution: 0.1%

Carrier feedthrough
- Accuracy: ±2.0 dB
- Resolution: 0.1 dB

Magnitude error
- Accuracy: ±0.5%
- Resolution: ±0.01%

Phase error
- Accuracy: ±1.0 degrees
- Resolution: 0.1 degrees

Adjacent channel power ratio measurement

- Power range at RF input: +30 to –20 dBm
- Dynamic range (referenced to average power of carrier in 1.23 MHz BW)

<table>
<thead>
<tr>
<th>Offset frequency</th>
<th>Integ BW</th>
<th>Dynamic range</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 kHz</td>
<td>30 kHz</td>
<td>–82 dBc</td>
</tr>
<tr>
<td>885 kHz</td>
<td>30 kHz</td>
<td>–82 dBc</td>
</tr>
<tr>
<td>1.25625 MHz</td>
<td>12.5 kHz</td>
<td>–86 dBc</td>
</tr>
<tr>
<td>1.98 MHz</td>
<td>30 kHz</td>
<td>–85 dBc</td>
</tr>
<tr>
<td>2.75 MHz</td>
<td>1 MHz</td>
<td>–56 dBc</td>
</tr>
</tbody>
</table>

Relative accuracy ±0.9 dB
- Resolution: 0.01 dB

Spurious close measurement (at transmitter maximum power)

- Carrier power range at RF input: +30 to –30 dBm
- Minimum spurious emission power sensitivity at RF input:
 - –70 dBm (30 kHz RBW)
- Absolute accuracy for in-band signal: ±1.0 dB
- Relative accuracy: ±1.0 dB
- Resolution: 0.01 dB

Demod sync

- Even second input: Level and impedance same as external trigger
- PN offset range: 0 to 511 x 64 (chips)
- In-band frequency range
 - IS-95: 824 to 849 MHz
 - 869 to 894 MHz
 - J-STD-008: 1850 to 1910 MHz
 - 1930 to 1990 MHz

EDGE/GSM (Option E4406A-202)

3π/8 8PSK Modulation

GSM (Option E4406A-BAH)

GSMK Modulation

Power versus time measurement

Power versus time measures the average power during the “useful part” of the EDGE or GSM burst and verifies that the power ramp is within the EDGE or GSM mask. The specified EDGE or GSM masks for both base transceiver stations and mobile stations are provided. Power versus time also lets you view the rise, fall, and “useful part” of the burst. The timings are referenced to the transmitter from bit 13 to 14 of the training sequence (midamble).

Power vs. time and EDGE power vs. time

GMSK modulation (GSM)

3π/8 shifted 8PSK modulation (EDGE)

Measures mean transmitted RF carrier power during the useful part of the burst (GSM method) and the power vs. time ramping. 510 kHz RBW

Minimum carrier power

-30 dBm (nominal) at RF input for GSM and EDGE

Absolute power accuracy for in-band signal (excluding mismatch error)

18 to 30 °C; -0.11 ± 0.60 dB

0 to 55 °C; -0.11 ± 0.90 dB

Power ramp relative accuracy

RF input range = Auto +6 dB to noise

Mixer level ≤ -12 dBm +6 dB to noise

Measurement floor

-81 dBm + input attenuation (nominal)

Time resolution

200 ns

Burst to mask uncertainty

±0.2 bit (approx ±0.7 µs)

EDGE EVM measurement

The EDGE EVM measurement measures the modulation quality of the 3π/8 8PSK modulated signal providing you with IQ constellation diagram, error vector magnitude (EVM) in RMS and peak, 95 percentile, and I/Q origin offset.

EDGE EVM (Error Vector Magnitude)

3π/8 shifted 8PSK modulation Specifications based on 3GPP essential conformance requirements, and are based on 200 bursts

<table>
<thead>
<tr>
<th>Offset frequency</th>
<th>GSM</th>
<th>EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz</td>
<td>67.7 dB</td>
<td>67.7 dB</td>
</tr>
<tr>
<td>200 kHz</td>
<td>73.3 dB</td>
<td>73.3 dB</td>
</tr>
<tr>
<td>250 kHz</td>
<td>76.3 dB</td>
<td>76.3 dB</td>
</tr>
<tr>
<td>400 kHz</td>
<td>78.4 dB</td>
<td>77.9 dB</td>
</tr>
<tr>
<td>600 kHz</td>
<td>81.1 dB</td>
<td>80.2 dB</td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>85.0 dB</td>
<td>83.3 dB</td>
</tr>
<tr>
<td>1.8 MHz</td>
<td>90.3 dB</td>
<td>82.4 dB</td>
</tr>
<tr>
<td>6.0 MHz</td>
<td>94.0 dB</td>
<td>85.3 dB</td>
</tr>
</tbody>
</table>

Spectrum due to switching

Offset frequency

<table>
<thead>
<tr>
<th>Offset frequency</th>
<th>GSM (100%)</th>
<th>EDGE (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 kHz</td>
<td>68.7 dB</td>
<td>71.2 dB</td>
</tr>
<tr>
<td>600 kHz</td>
<td>71.0 dB</td>
<td>73.1 dB</td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>74.1 dB</td>
<td>77.0 dB</td>
</tr>
<tr>
<td>1.8 MHz</td>
<td>78.4 dB</td>
<td>80.4 dB</td>
</tr>
</tbody>
</table>
Transmit power measurement

The transmit power measurement determines the average power for an RF signal burst at or above a user specified threshold value. The threshold value may be absolute, or relative to the peak value of the signal.

<table>
<thead>
<tr>
<th>Transmit power</th>
<th>GMSK modulation (GSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier power range at RF input</td>
<td>+30dBm (1W) to –60 dBm</td>
</tr>
<tr>
<td>Absolute power accuracy for in-band signal (excluding mismatch error)</td>
<td>+30 to –40dBm at RF input</td>
</tr>
</tbody>
</table>

- +18 to 30 °C: ±0.6 dB (±0.4 dB, typical)
- 0 to +55 °C: ±0.9 dB

| Relative power accuracy (same channel, different transmit power, input attenuator fixed), input level change 0 to –76 dB | ±0.25dB (±0.1dB, typical) |

<table>
<thead>
<tr>
<th>Resolution</th>
<th>0.01dB Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.001dB Remote query</td>
</tr>
<tr>
<td>Instrument repeatability</td>
<td>±0.05 dB (nominal)</td>
</tr>
</tbody>
</table>

Phase and frequency error measurement

Phase and frequency error measures the modulation quality of a GSM transmitter. Phase and frequency error can be displayed both numerically and or graphically. A binary representation of the demodulated data bits is also available.

<table>
<thead>
<tr>
<th>Phase and Frequency Error</th>
<th>GMSK modulation (GSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications based on 3GPP essential conformance requirements, and are based on 200 bursts.</td>
<td></td>
</tr>
</tbody>
</table>

| Carrier power range at RF input | +27 to –45 dBm (nominal) |

<table>
<thead>
<tr>
<th>Phase error</th>
<th><0.5° Floor (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±0.5° Accuracy (RMS) (phase error range 1° to 15°)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak phase error</th>
<th><1.5° Floor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±2.0° Accuracy (phase error range 3° to 25°)</td>
</tr>
</tbody>
</table>

Frequency error

| Accuracy | ±5 Hz + (transmitter frequency x frequency reference accuracy) |

I/Q offset

<table>
<thead>
<tr>
<th>Range</th>
<th>–15 to –50 dBC (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst sync time uncertainty</td>
<td>±0.1 bit (approx. ±0.4 µs)</td>
</tr>
</tbody>
</table>

| Trigger to T0 time offset Relative offset accuracy | ±5.0 ns (nominal) |

Burst sync

<table>
<thead>
<tr>
<th>Source</th>
<th>Training sequence, RF amplitude, external rear, none. Actual available choices dependent on measurement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training sequence code</td>
<td>GSM defined 0 to 7 auto (search) or manual</td>
</tr>
<tr>
<td>Burst type</td>
<td>Normal (TCH and CCH), Sync (SCH), Access (RACH)</td>
</tr>
</tbody>
</table>

In-band frequency range

- **Down band GSM**: 400 to 500 MHz
- **GSM 900, P-GSM**: 890 to 915 MHz, 935 to 960 MHz
- **GSM 900, E-GSM**: 880 to 915 MHz, 925 to 960 MHz
- **DCS 1800**: 1710 to 1785 MHz, 1805 to 1880 MHz
- **PCS1900**: 1850 to 1910 MHz, 1930 to 1990 MHz
- **GSM 450**: 450.4 to 457.6 MHz, 460.4 to 467.6 MHz
- **GSM 480**: 478.8 to 486 MHz, 488.8 to 496 MHz
- **GSM 850**: 824 to 849 MHz, 869 to 894 MHz
NADC/PDC (Option E4406A-BAE)

ACPR measurement
Carrier power range +27 to –20 dBm at RF input
Dynamic range

NADC mode
- Offset frequency (Integ BW)
 - 30 kHz (32.8 kHz) –35 dB (nominal)
 - 60 kHz (32.8 kHz) –65 dB
 - 90 kHz (32.8 kHz) –70 dB

PDC mode
- Offset frequency (Integ BW)
 - 50 kHz (21.0 kHz) –55 dB
 - 100 kHz (21.0 kHz) –70 dB

Relative accuracy
- Resolution ±1.0 dB
- Display resolution 0.01 dB

EVM measurement
EVM measurement measures the modulation quality of pi/4QPSK modulated signal providing you with IQ constellation diagram, error vector magnitude (EVM) in RMS and peak as well as each chip of magnitude error, phase error and EVM.

Range at RF input +27 to –20 dBm
(Common in NADC and PDC)

EVM
- Range 0 to 25%
- Floor 1.0%
- Accuracy ±0.6%

I/Q origin offset
- Range –10 to –50 dBc
- Resolution 0.01 dB display resolution

Carrier frequency error
- Frequency resolution 0.01 Hz display resolution

OBW measurement (PDC only)
Range at RF input +27 to –20 dBm
Frequency
- Resolution 0.1 kHz
- Accuracy +400 Hz, –100 Hz

In-band frequency range (NADC)
800 MHz band
- Mobile transmit 824 to 849 MHz
- Base station transmit 869 to 894 MHz

PCS band
- Mobile transmit 1850 to 1910 MHz
- Base station transmit 1930 to 1990 MHz

In-band frequency range (PDC)
800 MHz band #1 810 to 828 MHz
940 to 958 MHz
800 MHz band #2 870 to 885 MHz
925 to 940 MHz
800 MHz band #3 838 to 840 MHz
893 to 895 MHz
1500 MHz band 1477 to 1501 MHz
1429 to 1453 MHz

General characteristics

Temperature range
- Operating 0 to +55 ºC
- Non-operating –40 to +71 ºC

EMI compatibility
Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.

Radiated immunity (RF input)
When tested at 3 V/m according to IEC 801-3/1984, the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz, except that at immunity test frequencies of 278.6 MHz ± selected resolution bandwidth and 321.4 MHz ± selected resolution bandwidth, the displayed average noise level may be up to –90 dBm. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to ±90 dBm displayed on the screen.
Electrostatic

In accordance with IEC 801-2/1991, an discharge air discharge of up to 8 kV, or a contact discharge of up to 4 kV, will not cause any change of instrument state or measurement data. However, discharges to center pins of front or rear panel connectors might cause damage to the associated circuitry.

Power requirements

<table>
<thead>
<tr>
<th>Voltage, frequency</th>
<th>90 to 132 V rms, 47 to 440 Hz</th>
<th>195 to 250 V rms, 47 to 66 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption, ON</td>
<td>< 350 W</td>
<td></td>
</tr>
<tr>
<td>Power consumption, standby</td>
<td>< 20 W</td>
<td></td>
</tr>
</tbody>
</table>

Weight

<table>
<thead>
<tr>
<th>Net</th>
<th>19 kg (42 lb) (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipping</td>
<td>39 kg (86 lb) (nominal)</td>
</tr>
</tbody>
</table>

Dimensions

177 mm H x 426 mm W x 432 mm D
(7.0 in H x 16.8 in W x 17 in D)

Front panel

RF input

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type N female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>50 Ω (nominal)</td>
</tr>
<tr>
<td>VSWR</td>
<td>20 to 2205 MHz ≤ 1.4:1 (≤ 1.24:1, typical)</td>
</tr>
<tr>
<td></td>
<td>2205 MHz to 4 GHz ≤ 1.6:1 (≤ 1.4:1, typical)</td>
</tr>
<tr>
<td></td>
<td>50 MHz ≤ 1.4:1 (≤ 1.08:1, typical)</td>
</tr>
<tr>
<td>Baseband I/Q inputs</td>
<td>Supports: Basic, W-CDMA/HSOPA, cdma2000/1xEV-DV, and EDGE/GSM modes</td>
</tr>
<tr>
<td>Connectors</td>
<td>4 each I, Q, I–, and Q BNC female</td>
</tr>
<tr>
<td>Balanced input impedance</td>
<td>600 Ω, 1 MΩ (nominal) (switchable)</td>
</tr>
<tr>
<td>Unbalanced input impedance</td>
<td>50 Ω, 1 MΩ (nominal) (switchable)</td>
</tr>
<tr>
<td>VSWR</td>
<td>≤ 1.4:1 (≤ 1.08:1, typical)</td>
</tr>
</tbody>
</table>

Probe pwr

<table>
<thead>
<tr>
<th>Voltage/current</th>
<th>+15 Vdc, ±7% at 150 mA maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−12.6 Vdc, ±10% at 150 mA maximum</td>
</tr>
</tbody>
</table>

Rear panel

10 MHz OUT

<table>
<thead>
<tr>
<th>Connector</th>
<th>BNC female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>50 Ω (nominal)</td>
</tr>
<tr>
<td>Output amplitude</td>
<td>≥ 0 dBm (nominal)</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 MHz to 30 MHz, selectable</td>
</tr>
<tr>
<td>Frequency lock range</td>
<td>±5 x 10–6 of the specified external reference input frequency</td>
</tr>
</tbody>
</table>

EXT REF IN

<table>
<thead>
<tr>
<th>Connector</th>
<th>BNC female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>50 Ω (nominal)</td>
</tr>
<tr>
<td>Input amplitude range</td>
<td>−5 to +10 dBm (nominal)</td>
</tr>
<tr>
<td>Maximum DC level</td>
<td>±28 Vdc</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 MHz to 30 MHz, selectable</td>
</tr>
<tr>
<td>Frequency lock range</td>
<td>±5 x 10–6 of the specified external reference input frequency</td>
</tr>
</tbody>
</table>

MONITOR output

<table>
<thead>
<tr>
<th>Connector</th>
<th>VGA compatible, 15-pin mini D-SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, noninterlaced)</td>
</tr>
<tr>
<td>Resolution</td>
<td>640 x 480</td>
</tr>
</tbody>
</table>

PARALLEL interface

Allows printing to compatible printers

GPIB interface

Allows communication with compatible devices

LAN interface

Allows communication with 10baseT LAN

Note: Instrument noise sidebands and spurious responses might be affected by the quality of the external reference used.
Agilent E4406A vector signal analyzer product and application information

Agilent E4406A Vector Signal Analyzer, Brochure
Literature number 5968-7618E

PSA Series Spectrum Analyzers E4406A Vector Signal Analyzer Technical Overviews
• W-CDMA and HSDPA/HSUPA Measurement Personality
 Literature number 5988-2388EN
• cdma2000 and 1xEV-DV Measurement Personality
 Literature number 5988-3694EN
• 1xEV-DO Measurement Personality
 Literature number 5988-4828EN
• GSM with EDGE Measurement Personality
 Literature number 5988-2389EN

Select the Right Agilent Signal Analyzer for Your Needs, Selection Guide
Literature number 5968-3413E

Application notes

AN 1298 Digital Modulation in Communications Systems — An Introduction
Literature number 5965-7160E

AN 1311 Understanding CDMA Measurements for Base Stations and Their Components
Literature number 5968-0953E

AN 1312 Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components
Literature number 5968-2320E

AN 1313 Testing and Troubleshooting Digital RF Communications Transmitter Designs
Literature number 5968-3578E

AN 1314 Testing and Troubleshooting Digital RF Communications Receiver Designs
Literature number 5968-3579E

AN 1324 Understanding PDC and NADC Transmitter Measurements for Base Transceiver Stations and Mobile Stations, Literature number 5968-5537E

AN 1335 HPSK Spreading for 3G,
Literature number 5968-8438E

AN 1355 Designing and Testing 3GPP W-CDMA Base Stations Literature number 5980-1239E

AN 1356 Designing and Testing 3GPP W-CDMA User Equipment Literature number 5980-1238E

AN 1357 Designing and Testing cdma2000 Base Stations Literature number 5980-1303E

AN 1358 Designing and Testing cdma2000, Mobile Stations Literature number 5980-1237E

See Agilent’s VSA internet page for the latest VSA news, product, and support information, application literature, firmware upgrades, and more at:

www.agilent.com/find/vsa
Agilent Technologies’ Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.