MODEL COS6100
OSCILLOSCOPE
TABLE OF CONTENTS

1. GENERAL .. 1
 1.1 Description .. 1
 1.2 Features .. 1

2. SPECIFICATIONS ... 5

3. PRECAUTIONS BEFORE OPERATING THE OSCILLOSCOPE 14
 3.1 Unpacking the Oscilloscope 14
 3.2 Checking the Line Voltage 14
 3.3 Environments 15
 3.4 CRT Intensity 15
 3.5 Withstanding Voltages of Input Terminal 15

4. OPERATION METHOD ... 16
 4.1 Explanation of Front Panel 16
 4.2 Explanation of Rear Panel 28
 4.3 Basic Operation 32
 4.4 Vertical Mode Switches 35
 4.5 CH3 HOR Operation 38
 4.6 Triggering .. 39
 4.7 Single-sweep Operation 47
 4.8 Sweep Magnification 48
 4.9 Waveform Magnification with Delayed Sweep 49
 4.10 Delayed ALT Sweep 51
 4.11 B ENDS A Mode 52

5. MEASURING METHODS .. 54
 5.1 Connection Method of Input Signal 54
 5.2 Voltage Measurement 57
 5.3 Current Measurement 57
 5.4 Time Measurement 58
 5.5 Frequency Measurement 58
 5.6 Measurement of Phase Difference 60
 5.7 Characteristics of Pulse Waveform 61
1. GENERAL

1.1 Description

Kikusui Model COS6100 Oscilloscope is a universal-type portable oscilloscope which is capable of 5-channel 12-trace display. It employs a 6-inch rectangular type cathode-ray tube with red internal graticule.

The COS6100 oscilloscope is sturdy, easy to operate, and extremely reliable. This scope has many convenient features and special functions which make it an ideal instrument for diversified types of research and development of electronic equipment. It can also be efficiently used in production line maintenance and service applications.

1.2 Features

The features of the COS6100 Oscilloscope can be summarized as follows:

(1) Ease of use:

Light torque lever switches and pushbutton switches are used. These and other controls are laid out in the most convenient locations making the oscilloscope extremely easy to operate.

(2) Clear waveform observation:

The cathode-ray tube is a 6-inch large-screen rectangular type CRT with a red internal graticule of 80 mm × 100 mm (3.15 in. × 3.94 in.) The red graticule produces a high resolution background for easy waveform viewing.
(3) High acceleration voltage (20 kV):

The high acceleration voltage of the CRT ensures a bright trace for observation and photography.

(4) High sensitivity and wide frequency bandwidth:

The maximum vertical sensitivity is 1 mV/DIV (with ×5 MAG) and the frequency response is 100 MHz or greater (-3 dB).

(5) High input impedance:

The input impedance of CH1, CH2, CH3, CH4 and CH5 (EXT TRIG) is $1 \, \text{M} \Omega \pm 1\%$, 20 pF ±2 pF, allowing the use of 10× Probes.

(6) 5-channel simultaneous display:

The COS6100 employs a new type of vertical mode switching circuit which enables display of any combination of CH1, ADD (CH1 ± CH2), CH2, CH3, and TRIG VIEW (CH4 and CH5). Up to five channels can be displayed simultaneously; up to twelve traces can be displayed when in the alternate sweep mode.

(7) Trigger level lock:

A new trigger level lock circuit eliminates the requirement of triggering adjustments on most signals. (Manual control is still available for triggering on complex waveforms.)
(8) Stable alternate triggering function:

When in the alternate triggering mode, stable triggering can be attained even when the signals of CH1, CH2 and CH3 are not time released. (patent pending)

(9) TV sync triggering:

The COS6100 has a sync separator circuit, which allows triggering for TV V signal and TV H signal. It is automatically switched with the TIME/DIV control.

(10) B END'S A switch separated from holdoff control knob:

The B END'S A switch is installed separately from the holdoff control switch. Holdoff control can be used while in the B END'S A mode.

(11) Maximum sweep time 2 nsec/DIV with ×10 MAG function:

With the ×10 MAG function, the highest sweep speed of 20 nsec/DIV can be multiplied by a factor of 10 to attain a maximum sweep speed of 2 nsec/DIV.

(12) Alternate sweep:

The A sweep and the delayed sweep can be viewed simultaneously in the alternate mode.
(13) Linear focus:

Once the beam focus is adjusted, it is automatically maintained in this state regardless of changes in intensity.

(14) Multiple-channel X-Y operation:

By using the CH3 HOR channel as the X-axis input and all other channels as the Y-axis inputs, up to four channels of X-Y operation can be viewed.
2. SPECIFICATIONS

Vertical axes

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 and CH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>5 mV/DIV - 5 V/DIV</td>
<td>1-2-5 sequence, 10 ranges</td>
</tr>
<tr>
<td></td>
<td>1 mV/DIV - 1 V/DIV (when (\times 5) MAG)</td>
<td></td>
</tr>
<tr>
<td>Sensitivity accuracy</td>
<td>(\pm 2%)</td>
<td>10 to 35°C (50 to 95°F), at 8 DIV</td>
</tr>
<tr>
<td></td>
<td>(\pm 4%) (when (\times 5) MAG)</td>
<td></td>
</tr>
<tr>
<td>Variable vertical sensitivity</td>
<td>To 1/2.5 or less of panel-indicated value</td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC - 100 MHz (-3 dB)</td>
<td>With reference to 50 kHz, 8 DIV.</td>
</tr>
<tr>
<td></td>
<td>DC - 10 MHz (-3 dB), when (\times 5) MAG</td>
<td>Except when in bandwidth limit mode</td>
</tr>
<tr>
<td></td>
<td>AC coupling: Low limit frequency 10 Hz</td>
<td></td>
</tr>
<tr>
<td>Input coupling</td>
<td>AC, DC, GND</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 M(\Omega) (\pm 1%), 20 pF (\pm 2) pF</td>
<td></td>
</tr>
<tr>
<td>Allowable input voltage</td>
<td>400 V (DC + AC peak)</td>
<td>Frequency 1 kHz or lower</td>
</tr>
<tr>
<td>Square wave characteristics</td>
<td>Overshoot: Not greater than 3% (at 10 mV/DIV range)</td>
<td>Other ranges: Add 5%</td>
</tr>
<tr>
<td></td>
<td>Other distortions: Not greater than 2%</td>
<td>VARIABLE knob is CAL'D position.</td>
</tr>
<tr>
<td>CH3 (HOR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1 V, 1 V/DIV</td>
<td>10 to 35°C (50 to 95°F)</td>
</tr>
<tr>
<td>Sensitivity accuracy</td>
<td>(\pm 3%)</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC – 100 MHz (-3 dB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC coupling: Low limit frequency 10 Hz</td>
<td></td>
</tr>
<tr>
<td>Input coupling</td>
<td>AC, DC, GND</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 MΩ ±1%, 20 pF ±2 pF</td>
<td></td>
</tr>
<tr>
<td>Allowable input voltage</td>
<td>400 V (DC + AC peak)</td>
<td>Frequency 1 kHz or lower</td>
</tr>
<tr>
<td>Square wave characteristics</td>
<td>Overshoot: Not greater than 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other distortions: Not greater than 3%</td>
<td></td>
</tr>
<tr>
<td>CH4 and CH5</td>
<td>CH4: A TRIG EXT input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH5: B TRIG EXT input</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1 V, 1 V/DIV</td>
<td></td>
</tr>
<tr>
<td>Sensitivity accuracy</td>
<td>±3%</td>
<td>10 - 35°C (50 - 95°F)</td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC – 100 MHz (-3 dB)</td>
<td>With reference to 50 kHz, 4 DIV</td>
</tr>
<tr>
<td></td>
<td>AC coupling: Low limit frequency 10 Hz</td>
<td></td>
</tr>
<tr>
<td>Input coupling</td>
<td>CH4: AC, HF REJ, TV, DC</td>
<td>Selectable with the coupling switch</td>
</tr>
<tr>
<td></td>
<td>CH5: AC, HF REJ, LF REJ, DC</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 MΩ ±1%, 20 pF ±2 pF</td>
<td></td>
</tr>
<tr>
<td>Allowable input voltage</td>
<td>100 V (DC + AC peak)</td>
<td>Frequency 1 kHz or lower</td>
</tr>
<tr>
<td>Square wave characteristics</td>
<td>Overshoot: Not greater than 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other distortions: Not greater than 5%</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>Approx. 3.5 nsec (Approx. 35 nsec when ×5 MAG)</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
<td>Remarks</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Signal delay time</td>
<td>Approx. 40 nsec (with delay cable of approx. 100 nsec)</td>
<td>The displayed portion preceding the triggering point</td>
</tr>
<tr>
<td>Delay time differences among channels</td>
<td>Not greater than ±0.5 nsec among CH1, CH2, and CH3</td>
<td></td>
</tr>
<tr>
<td>Polarity change</td>
<td>CH2 only</td>
<td></td>
</tr>
<tr>
<td>DC balance shift</td>
<td>±0.5 DIV (±2.0 DIV when in ×5 MAG)</td>
<td>CH1 and CH2, at 10 mV/DIV</td>
</tr>
<tr>
<td>Display modes</td>
<td>Simultaneous displays of CH1, ADD (CH1 + CH2), CH2, CH3, and TRIG VIEW (CH4 and CH5) are possible in any combination. Single X-Y (CH1 for X-axis and CH2 for Y-axis) also is possible.</td>
<td></td>
</tr>
<tr>
<td>Chopping repetition frequency</td>
<td>1 MHz/ (number of displayed channels) ±40%</td>
<td></td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>50:1 or better at 50 kHz, sinusoidal wave</td>
<td>When sensitivities of CH1 and CH2 are set equal</td>
</tr>
<tr>
<td>Isolation between channels</td>
<td>At least 1000:1 at 50 kHz</td>
<td>At 5 mV/DIV range</td>
</tr>
<tr>
<td>Bandwidth limit</td>
<td>With filter for approx. 3 dB attenuation at 20 MHz</td>
<td></td>
</tr>
<tr>
<td>CH1 signal output</td>
<td>Approx. 10 mV per 1 DIV deflection amplitude on screen</td>
<td>50-ohm termination</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC - 100 MHz (-6 dB)</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>Approx. 50 ohms</td>
<td></td>
</tr>
</tbody>
</table>
Triggering

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal trigger selection</td>
<td>CH1, CH2, CH3, ALT</td>
<td>When in ADD, the CH1 input signal is used as the trigger source signal.</td>
</tr>
<tr>
<td>(INT TRIG switch)</td>
<td>(When in ALT mode, a trigger source is selected depending on the vertical operation mode.)</td>
<td></td>
</tr>
<tr>
<td>A trigger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal source</td>
<td>INT, LINE, EXT, EXT/10</td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td>AC, HF REJ, TV, DC</td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>+ or -</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>DC – 20 MHz: 0.4 DIV (0.04 V)</td>
<td>The values enclosed in the parentheses are the input sensitivities when in the EXT trigger mode.</td>
</tr>
<tr>
<td></td>
<td>20 – 100 MHz: 1.5 DIV (0.15 V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 – 130 MHz: 3.0 DIV (0.3 V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Video signal: 1.0 DIV (0.1 V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC coupling:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attenuates signal components of lower than 10 Hz.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF REJ:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attenuates signal components of higher than 50 kHz.</td>
<td></td>
</tr>
<tr>
<td>B trigger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal source</td>
<td>INT, EXT, EXT/10</td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td>AC, HF REJ, LF REJ, DC</td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>+ or -</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>DC – 20 MHz: 0.4 DIV (0.04 V)</td>
<td>The values enclosed in the parentheses are the input sensitivities when in the EXT trigger mode.</td>
</tr>
<tr>
<td></td>
<td>20 – 100 MHz: 1.5 DIV (0.15 V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 – 130 MHz: 3.0 DIV (0.3 V)</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>EXT trigger input</td>
<td>CH4 and CH5 input terminals used in common</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 MΩ ±2%, 20 pF ±2 pF</td>
<td></td>
</tr>
<tr>
<td>Maximum allowable input voltage</td>
<td>100 V (DC + AC peak)</td>
<td>Frequency 1 kHz or lower</td>
</tr>
<tr>
<td>AUTO mode</td>
<td>Satisfies the A trigger sensitivity specification for signal repetition frequency of 50 Hz of over.</td>
<td></td>
</tr>
<tr>
<td>LEVEL LOCK</td>
<td>Satisfies the value of the above trigger sensitivity plus 0.5 DIV (0.05 V) for signal of duty cycle 20:80 and repetition frequency 50 Hz - 100 MHz.</td>
<td></td>
</tr>
</tbody>
</table>

Horizontal axis

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal axis display</td>
<td>A, A INT, ALT, B (DLY'D)</td>
<td></td>
</tr>
<tr>
<td>A sweep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweep mode</td>
<td>AUTO, NORM, SINGLE</td>
<td></td>
</tr>
<tr>
<td>Sweep time</td>
<td>20 nsec/DIV - 0.5 sec/DIV</td>
<td>1-2-5 sequence, 23 ranges</td>
</tr>
<tr>
<td></td>
<td>2 nsec/DIV - 50 msec/DIV</td>
<td></td>
</tr>
<tr>
<td>(when in "× 10 MAC")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweep time accuracy</td>
<td>±2%</td>
<td>10 to 30°C (50 to 95°F)</td>
</tr>
<tr>
<td>Variable sweep time</td>
<td>To 1/2.5 or slower of panel-indicated value</td>
<td></td>
</tr>
<tr>
<td>Holdoff time</td>
<td>Continuously variable to 2 times or over of sweep length (time) at 20 nsec/DIV - 0.1 sec/DIV ranges</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>B sweep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay system</td>
<td>Continuous delay or triggered delay</td>
<td></td>
</tr>
<tr>
<td>Sweep time</td>
<td>20 nsec/DIV - 0.5 sec/DIV</td>
<td>1-2-5 sequence, 23 ranges</td>
</tr>
<tr>
<td></td>
<td>2 nsec/DIV - 50 msec/DIV (when in "×10 MAG")</td>
<td></td>
</tr>
<tr>
<td>Sweep time accuracy</td>
<td>±2%</td>
<td>10 to 35°C (50 to 95°F)</td>
</tr>
<tr>
<td>Delay time</td>
<td>0.2 μsec - 5 sec</td>
<td></td>
</tr>
<tr>
<td>Delay time accuracy</td>
<td>±2% of multidial-indicated value (except 0 - 0.50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±3% of value read on screen</td>
<td></td>
</tr>
<tr>
<td>Delay jitter</td>
<td>1/20,000 or less</td>
<td>Jitter width 0.5 DIV or less at</td>
</tr>
<tr>
<td></td>
<td>[\frac{B \text{ sweep time} \times \text{jitter width}}{A \text{ sweep time}} \text{ 10 DIV}]</td>
<td>A: 1 msec/DIV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 1 μsec/DIV</td>
</tr>
<tr>
<td>Sweep magnification</td>
<td>10 times (maximum sweep time 2 nsec/DIV)</td>
<td>Both A and B</td>
</tr>
<tr>
<td>Magnified sweep time</td>
<td>0.1 μsec/DIV - 0.5 sec/DIV</td>
<td>10 to 35°C (50 to 95°F)</td>
</tr>
<tr>
<td>accuracy</td>
<td>ranges: ±4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 nsec/DIV - 50 nsec/DIV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ranges: ±5%</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>±3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5% (when in "×10 MAG")</td>
<td></td>
</tr>
<tr>
<td>CH3 sweep</td>
<td>CH3 input signal is used as sweep trigger signal.</td>
<td></td>
</tr>
<tr>
<td>(CH3 HOR)</td>
<td>For vertical axes, any combination of CH1, ADD (CH1 + CH2), CH2, and TRIG VIEW can be simultaneously displayed in CHOP mode.</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1 V, 1 V/DIV</td>
<td>Same as CH3</td>
</tr>
<tr>
<td>Sensitivity accuracy</td>
<td>±3%</td>
<td>Same as CH3</td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC - 5 MHz (-3 dB)</td>
<td>With reference to 50 kHz, 10 DIV</td>
</tr>
<tr>
<td></td>
<td>AC coupling: Low limit frequency 10 Hz</td>
<td></td>
</tr>
<tr>
<td>Phase difference between vertical axes</td>
<td>Not greater than 3° at DC - 100 kHz</td>
<td></td>
</tr>
<tr>
<td>X-Y mode</td>
<td>X-axis: CH1 input signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y-axis: CH2 input signal</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>5 mV - 5 V/DIV</td>
<td>Same as CH1</td>
</tr>
<tr>
<td>Sensitivity accuracy</td>
<td>±3%</td>
<td>10 to 35°C (-50 to 95°F)</td>
</tr>
<tr>
<td></td>
<td>±5% (when in "x 5 MAG")</td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC - 5 MHz (-3 dB)</td>
<td>With reference to 50 kHz, 10 DIV</td>
</tr>
<tr>
<td></td>
<td>AC coupling: Low limit frequency 10 Hz</td>
<td></td>
</tr>
<tr>
<td>X-Y phase difference</td>
<td>Not greater than 3° at DC - 100 kHz</td>
<td></td>
</tr>
<tr>
<td>Sweep signal output</td>
<td>A sweep signal</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>Approx. 5 Vp-p</td>
<td>Zo = 10 Ω</td>
</tr>
<tr>
<td>Sweep gate output</td>
<td>A sweep gate signal</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>Approx. 1 Vp-p</td>
<td>Zo = 100 Ω</td>
</tr>
</tbody>
</table>

Z axis

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>3 Vp-p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Trace becomes brighter with negative input.)</td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>DC - 10 MHz</td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>5 kΩ ±10%</td>
<td></td>
</tr>
<tr>
<td>Allowable input voltage</td>
<td>50 Vp-p (DC + AC peak)</td>
<td>AC: 1 kHz or lower</td>
</tr>
</tbody>
</table>
Calibration voltage

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform</td>
<td>Positive-going square wave</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1 kHz ±5%</td>
<td></td>
</tr>
<tr>
<td>Duty ratio</td>
<td>Within 45:55</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>2 V, 200 mV ±2%</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>Approx. 3 µsec</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>2 V: Approx. 2 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mV: Approx. 200 Ω</td>
<td></td>
</tr>
</tbody>
</table>

CRT

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>6-inch rectangular type, internal graticule</td>
<td></td>
</tr>
<tr>
<td>Fluorescent screen</td>
<td>P31 phosphor</td>
<td></td>
</tr>
<tr>
<td>Acceleration voltage</td>
<td>Approx. 20 kV</td>
<td></td>
</tr>
<tr>
<td>Effective screen size</td>
<td>8 × 10 DIV</td>
<td>1 DIV = 10 mm (0.39 in.)</td>
</tr>
<tr>
<td>Graticule</td>
<td>Internal graticule, continuously adjustable illumination</td>
<td>Red</td>
</tr>
</tbody>
</table>

Mechanical specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions of mainframe</td>
<td>310 W × 150 H × 400 D mm (12.20 W × 5.91 H × 15.75 D in.)</td>
<td></td>
</tr>
<tr>
<td>Maximum dimensions</td>
<td>370 W × 190 H × 480 D mm (14.57 W × 7.48 H × 18.90 D in.)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 9.5 kg (21 lbs)</td>
<td></td>
</tr>
</tbody>
</table>
Lines of power requirements

Voltage: 100 V, 115 V, 215 V, 230 V; with 10% allowance.
 Selectable by connector change

Frequency: 50 Hz or 60 Hz

Wattage: Approx. 56 W (Approx. 66 VA)

Operating environment

To satisfy specifications: 5 to 35°C (41 to 95°F),
 85% RH

Maximum operating ranges: 0 to 40°C (32 to 104°F),
 90% RH

Accessories

961 BNC probes (10:1, 1.5 m) (89-03-0230) 2
942A terminal adaptors (W4-986-011) 3
Slow blow fuse (0.5A) (99-02-0115) 1
Slow blow fuse (1 A) (99-02-0120) 1
Power cord (85-10-0120) 1
Instruction manual () 1

Power cord (USA and Canada) (85-10-0170)
 (European countries) ..(85-10-0140)
ERRATA SHEET

Throughout manual, reference of Model COS 6100 change to P/N COS 6100M.
The reference of TV sync is changed to AC LF REJ.

Ratios to 1/2.5, etc. throughout manual are changed to 1:2.5, etc.

Page 8 - A Trigger Sensitivity and B Trigger Sensitivity are changed as follows:

DC: 0.3 div internal or 50 mV P-P external from DC to 25 MHz.
1.0 div internal or 150 mV P-P external from 25 MHz to 100 MHz.

AC: 0.3 div internal or 50 mV P-P external from 30 Hz to 25 MHz.
1.0 div internal or 150 mV P-P external from 25 MHz to 100 MHz.

LF REJ: 0.3 div internal or 50 mV external from 15 kHz to 25 MHz.
1.0 div internal or 150 mV external from 25 MHz to 100 MHz.

HF REJ: 0.3 div internal or 50 mV external from 30 Hz to 50 kHz.

Page 9 - Sweep time accuracy is changed to ± 3%, 0°C to 55°C.

Page 10 - Sweep time accuracy is changed to ± 3%, 0°C to 55°C.

Page 10 - Magnified sweep time accuracy for 0.1 μsec/div to 0.5 sec/div range is changed to ± 3%.

Page 10 - Linearity is changed from ± 3% to read: 0.25 minor divisions or less.

Page 12 - Calibrator output voltage is changed to read: 1 V, 200 mV.
Accuracies are changed to read: ± 2% @ 200 mV, ± 1% @ 1 V.

Page 13 - Accessories, a 1:1 and two 10:1 probes are included instead of two 10:1 probes.

Pages 22-23 - All references to TV coupling are deleted.

Pages 27-28 - All references to 2 V calibrator signal are changed to 1 V.

Page 30, Figure 4-1, Item 34 - Change TV setting to read LF REJ.

Page 43 - Reference to TV and Figure 4-7 is deleted.

Pages 80-82 - The references to TV synchronization are deleted.

Page 93, Paragraph 6.14 - The reference to the 2 V P-P is changed to 1 V P-P.

Diagram 3 - A TRIG CIRCUIT schematic diagram, the TV SYNC SEP circuit does not apply.